Project description:Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.
Project description:Germline mutations in SAMD9 and SAMD9L genes cause MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy) (OMIM: *610456) and ataxia-pancytopenia (OMIM: *611170) syndromes, respectively, and are associated with chromosome 7 deletions, myelodysplastic syndrome (MDS), and bone marrow failure. In this retrospective series, we report outcomes of allogeneic hematopoietic cell transplantation (HCT) in patients with hematologic disorders associated with SAMD9/SAMD9L mutations. Twelve patients underwent allogeneic HCT for MDS (n?=?10), congenital amegakaryocytic thrombocytopenia (n?=?1), and dyskeratosis congenita (n?=?1). Exome sequencing revealed heterozygous mutations in SAMD9 (n?=?6) or SAMD9L (n?=?6) genes. Four SAMD9 patients had features of MIRAGE syndrome. Median age at HCT was 2.8 years (range, 1.2 to 12.8 years). Conditioning was myeloablative in 9 cases and reduced intensity in 3 cases. Syndrome-related comorbidities (diarrhea, infections, adrenal insufficiency, malnutrition, and electrolyte imbalance) were present in MIRAGE syndrome cases. One patient with a familial SAMD9L mutation, MDS, and morbid obesity failed to engraft and died of refractory acute myeloid leukemia. The other 11 patients achieved neutrophil engraftment. Acute post-transplant course was complicated by syndrome-related comorbidities in MIRAGE cases. A patient with SAMD9L-associated MDS died of diffuse alveolar hemorrhage. The other 10 patients had resolution of hematologic disorder and sustained peripheral blood donor chimerism. Ten of 12 patients were alive with a median follow-up of 3.1 years (range, 0.1 to 14.7 years). More data are needed to refine transplant approaches in SAMD9/SAMD9L patients with significant comorbidities and to develop guidelines for their long-term follow-up.
Project description:Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.
Project description:Germline SAMD9 and SAMD9L mutations cause a spectrum of multisystem disorders that carry a markedly increased risk of developing myeloid malignancies with somatic monosomy 7. Here, we describe 16 siblings, the majority of which were phenotypically normal, from 5 families diagnosed with myelodysplasia and leukemia syndrome with monosomy 7 (MLSM7; OMIM 252270) who primarily had onset of hematologic abnormalities during the first decade of life. Molecular analyses uncovered germline SAMD9L (n = 4) or SAMD9 (n = 1) mutations in these families. Affected individuals had a highly variable clinical course that ranged from mild and transient dyspoietic changes in the bone marrow to a rapid progression of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with monosomy 7. Expression of these gain-of-function SAMD9 and SAMD9L mutations reduces cell cycle progression, and deep sequencing demonstrated selective pressure favoring the outgrowth of clones that have either lost the mutant allele or acquired revertant mutations. The myeloid malignancies of affected siblings acquired cooperating mutations in genes that are also altered in sporadic cases of AML characterized by monosomy 7. These data have implications for understanding how SAMD9 and SAMD9L mutations contribute to myeloid transformation and for recognizing, counseling, and treating affected families.
Project description:BACKGROUND:The physiological functions of the human Sterile Alpha Motif Domain-containing 9 (SAMD9) gene and its chromosomally adjacent paralogue, SAMD9-like (SAMD9L), currently remain unknown. However, the direct links between the deleterious mutations or deletions in these two genes and several human disorders, such as inherited inflammatory calcified tumors and acute myeloid leukemia, suggest their biological importance. SAMD9 and SAMD9L have also recently been shown to play key roles in the innate immune responses to stimuli such as viral infection. We were particularly interested in understanding the mammalian evolutionary history of these two genes. The phylogeny of SAMD9 and SAMD9L genes was reconstructed using the Maximum Likelihood method. Furthermore, six different methods were applied to detect SAMD9 and SAMD9L codons under selective pressure: the site-specific model M8 implemented in the codeml program in PAML software and five methods available on the Datamonkey web server, including the Single Likelihood Ancestor Counting method, the Fixed Effect Likelihood method, the Random Effect Likelihood method, the Mixed Effects Model of Evolution method and the Fast Unbiased Bayesian AppRoximation method. Additionally, the house mouse (Mus musculus) genome has lost the SAMD9 gene, while keeping SAMD9L intact, prompting us to investigate whether this loss is a unique event during evolution. RESULTS:Our evolutionary analyses suggest that SAMD9 and SAMD9L arose through an ancestral gene duplication event after the divergence of Marsupialia from Placentalia. Additionally, selection analyses demonstrated that both genes have been subjected to positive evolutionary selection. The absence of either SAMD9 or SAMD9L genes from some mammalian species supports a partial functional redundancy between the two genes. CONCLUSIONS:To the best of our knowledge, this work is the first study on the evolutionary history of mammalian SAMD9 and SAMD9L genes. We conclude that evolutionary selective pressure has acted on both of these two genes since their divergence, suggesting their importance in multiple cellular processes, such as the immune responses to viral pathogens.
Project description:SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.
Project description:Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations. Here, we used a lentiviral overexpression approach to assess the functional impact and underlying cellular processes of wild-type and mutant SAMD9 or SAMD9L in primary mouse or human hematopoietic stem and progenitor cells (HSPC). Using a combination of protein interactome analyses, transcriptional profiling, and functional validation, we show that SAMD9 and SAMD9L are multifunctional proteins that cause profound alterations in cell cycle, cell proliferation, and protein translation in HSPCs. Importantly, our molecular and functional studies also demonstrated that expression of these genes and their mutations leads to a cellular environment that promotes DNA damage repair defects and ultimately apoptosis in hematopoietic cells. This study provides novel functional insights into SAMD9 and SAMD9L and how their mutations can potentially alter hematopoietic function and lead to bone marrow hypocellularity, a hallmark of pediatric MDS.
Project description:Relevance of germline (GL) predisposition in myelodysplastic syndromes (MDSs) was stressed in both 2022 WHO and International Consensus classifications, but its incidence is probably underestimated, especially in young adult patients. We selected a cohort of 31 consecutive de novo MDS patients with unusual young age (<60 years). We performed exome sequencing (ES) on DNA extracted from noninvasive sources (peripheral blood and saliva), filtering for a panel of 344 genes specifically tailored for detecting GL variants related to clonal and nonclonal cytopenia. We observed at least one high- or low-confidence GL MDS variant in 7/31 (22.6%) and 9/31 (29.0%) of cases, respectively. Four of 31 patients (12.9%) confirmed having established MDS/AML predisposing disorders. We found heterozygous variants in genes involved in DNA repair/cancer predisposition (ATM, ATR, FANCM, PARN, BRCA1, BRCA2, CHEK2, MSH2) in 9/31 (29.0%) cases and variants affecting ribosome biogenesis (SBDS), hematopoietic stem cell (GATA2), and megakaryocyte (ANKRD26) differentiation in single cases. Two cases had variants in RBBP6, a gene previously described exclusively in familial myeloproliferative neoplasms. Lastly, four cases had variants in genes related to inherited anemias (CUBN and PIEZO1 genes). Our results showed that "young" MDS patients aged 40-60 years carried reported and unreported GL variants with an unexpectedly high proportion, and these events co-occurred with somatic mutations recurrent in myeloid neoplasms. We explored the "no man's land" of the young adult MDS cases adopting a practical and scalable diagnostic tool, capable to detect GL variants avoiding invasive methods.
Project description:Although most cases of myeloid neoplasms are sporadic, a small subset has been associated with germline mutations. The 2016 revision of the World Health Organization classification included these cases in a myeloid neoplasm group with a predisposing germline mutational background. These patients must have a different management and their families should get genetic counseling. Cases identification and outline of the major known syndromes characteristics will be discussed in this text.
Project description:Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but Chinese hamster ovary (CHO) cells are nonpermissive for vaccinia virus (VACV). Here, we revealed a species-specific difference in host restriction factor SAMD9L as the cause for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of SAMD9 and SAMD9L (SAMD9&L), K1 and C7, can bind human and mouse SAMD9&L, but neither can bind chSAMD9L. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 knockout of chSAMD9L from CHO cells removed the restriction for VACV, while ectopic expression of chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that chSAMD9L is a potent restriction factor for VACV. In contrast to K1 and C7, cowpox virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a common internal region of SAMD9L. Growth studies with nearly all OPXV species showed that the ability of OPXVs to antagonize chSAMD9L correlates with CP77 gene status and that a functional CP77 ortholog was maintained in many OPXVs, including monkeypox virus. Our data suggest that a species-specific difference in rodent SAMD9L poses a barrier for cross-species OPXV infection and that OPXVs have evolved three SAMD9&L inhibitors with different specificities to overcome this barrier.IMPORTANCE Several OPXV species, including monkeypox virus and cowpox virus, cause zoonotic infection in humans. They are believed to use wild rodents as the reservoir or intermediate hosts, but the host or viral factors that are important for OPXV host range in rodents are unknown. Here, we showed that the abortive replication of several OPXV species in a Chinese hamster cell line was caused by a species-specific difference in the host antiviral factor SAMD9L, suggesting that SAMD9L divergence in different rodent species poses a barrier for cross-species OPXV infection. While the Chinese hamster SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human and mouse SAMD9&L, it can be inhibited by cowpox virus CP77, indicating that OPXVs encode three SAMD9&L inhibitors with different specificities. Our data suggest that OPXV host range in broad rodent species depends on three SAMD9&L inhibitors with different specificities.