Unknown

Dataset Information

0

A Short-Term Response of Soil Microbial Communities to Cadmium and Organic Substrate Amendment in Long-Term Contaminated Soil by Toxic Elements.


ABSTRACT: Two long-term contaminated soils differing in contents of Pb, Zn, As, Cd were compared in a microcosm experiment for changes in microbial community structure and respiration after various treatments. We observed that the extent of long-term contamination (over 200 years) by toxic elements did not change the total numbers and diversity of bacteria but influenced their community composition. Namely, numbers of Actinobacteria determined by phylum specific qPCR increased and also the proportion of Actinobacteria and Chloroflexi increased in Illumina sequence libraries in the more contaminated soil. In the experiment, secondary disturbance by supplemented cadmium (doses from double to 100-fold the concentration in the original soil) and organic substrates (cellobiose or straw) increased bacterial diversity in the less contaminated soil and decreased it in the more contaminated soil. Respiration in the experiment was higher in the more contaminated soil in all treatments and correlated with bacterial numbers. Considering the most significant changes in bacterial community, it seemed that particularly Actinobacteria withstand contamination by toxic elements. The results proved higher resistance to secondary disturbance in terms of both, respiration and bacterial community structure in the less contaminated soil.

SUBMITTER: Madrova P 

PROVIDER: S-EPMC6256134 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Short-Term Response of Soil Microbial Communities to Cadmium and Organic Substrate Amendment in Long-Term Contaminated Soil by Toxic Elements.

Madrova Pavla P   Vetrovsky Tomas T   Omelka Marek M   Grunt Michal M   Smutna Yvona Y   Rapoport Daria D   Vach Marek M   Baldrian Petr P   Kopecky Jan J   Sagova-Mareckova Marketa M  

Frontiers in microbiology 20181120


Two long-term contaminated soils differing in contents of Pb, Zn, As, Cd were compared in a microcosm experiment for changes in microbial community structure and respiration after various treatments. We observed that the extent of long-term contamination (over 200 years) by toxic elements did not change the total numbers and diversity of bacteria but influenced their community composition. Namely, numbers of <i>Actinobacteria</i> determined by phylum specific qPCR increased and also the proporti  ...[more]

Similar Datasets

| S-EPMC8871668 | biostudies-literature
| S-EPMC6932956 | biostudies-literature
| S-EPMC6220598 | biostudies-literature
| S-EPMC6831716 | biostudies-literature
| S-EPMC9849675 | biostudies-literature
| S-EPMC3695917 | biostudies-literature
| S-EPMC4765769 | biostudies-literature
| S-EPMC7217948 | biostudies-literature
2012-04-04 | GSE29644 | GEO
| S-EPMC5543114 | biostudies-other