Estimating the Population Impact of a New Pediatric Influenza Vaccination Program in England Using Social Media Content.
Ontology highlight
ABSTRACT: BACKGROUND:The rollout of a new childhood live attenuated influenza vaccine program was launched in England in 2013, which consisted of a national campaign for all 2 and 3 year olds and several pilot locations offering the vaccine to primary school-age children (4-11 years of age) during the influenza season. The 2014/2015 influenza season saw the national program extended to include additional pilot regions, some of which offered the vaccine to secondary school children (11-13 years of age) as well. OBJECTIVE:We utilized social media content to obtain a complementary assessment of the population impact of the programs that were launched in England during the 2013/2014 and 2014/2015 flu seasons. The overall community-wide impact on transmission in pilot areas was estimated for the different age groups that were targeted for vaccination. METHODS:A previously developed statistical framework was applied, which consisted of a nonlinear regression model that was trained to infer influenza-like illness (ILI) rates from Twitter posts originating in pilot (school-age vaccinated) and control (unvaccinated) areas. The control areas were then used to estimate ILI rates in pilot areas, had the intervention not taken place. These predictions were compared with their corresponding Twitter-based ILI estimates. RESULTS:Results suggest a reduction in ILI rates of 14% (1-25%) and 17% (2-30%) across all ages in only the primary school-age vaccine pilot areas during the 2013/2014 and 2014/2015 influenza seasons, respectively. No significant impact was observed in areas where two age cohorts of secondary school children were vaccinated. CONCLUSIONS:These findings corroborate independent assessments from traditional surveillance data, thereby supporting the ongoing rollout of the program to primary school-age children and providing evidence of the value of social media content as an additional syndromic surveillance tool.
SUBMITTER: Wagner M
PROVIDER: S-EPMC6257312 | biostudies-literature | 2017 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA