Unknown

Dataset Information

0

Large adipose tissue generation in a mussel-inspired bioreactor of elastic-mimetic cryogel and platelets.


ABSTRACT: Soft tissue generation, especially in large tissue, is a major challenge in reconstructive surgery to treat congenital deformities, posttraumatic repair, and cancer rehabilitation. The concern is along with the donor site morbidity, donor tissue shortage, and flap necrosis. Here, we report a dissection-free adipose tissue chamber-based novel guided adipose tissue regeneration strategy in a bioreactor of elastic gelatin cryogel and polydopamine-assisted platelet immobilization intended to improve angiogenesis and generate large adipose tissue in situ. In order to have matched tissue mechanics, we used 5% gelatin cryogel as growth substrate of bioreactor. Platelets from the platelet-rich plasma were then immobilized onto the gelatin cryogel with the aid of polydopamine to form a biomimetic bioreactor (polydopamine/gelatin cryogel/platelet). Platelets on the substrate led to a sustained high release in both platelet-derived growth factor and vascular endothelial growth factor compared with non-polydopamine-assisted group. The formed bioreactor was then transferred to a tissue engineering chamber and then inserted above inguinal fat pad of rats without flap dissection. This integrate strategy significantly boomed the vessel density, stimulated cellular proliferation, and upregulated macrophage infiltration. There was a noticeable rise in the expression of dual-angiogenic growth factors (platelet-derived growth factor and vascular endothelial growth factor) in chamber fluid; host cell migration and host fibrous protein secretion coordinated with gelatin cryogel degradation. The regenerated adipose tissue volume gained threefold larger than control group (p?

SUBMITTER: Chang Q 

PROVIDER: S-EPMC6259050 | biostudies-literature | 2018 Jan-Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Large adipose tissue generation in a mussel-inspired bioreactor of elastic-mimetic cryogel and platelets.

Chang Qiang Q   Cai Junrong J   Wang Ying Y   Yang Ruijia R   Xing Malcolm M   Lu Feng F  

Journal of tissue engineering 20180101


Soft tissue generation, especially in large tissue, is a major challenge in reconstructive surgery to treat congenital deformities, posttraumatic repair, and cancer rehabilitation. The concern is along with the donor site morbidity, donor tissue shortage, and flap necrosis. Here, we report a dissection-free adipose tissue chamber-based novel guided adipose tissue regeneration strategy in a bioreactor of elastic gelatin cryogel and polydopamine-assisted platelet immobilization intended to improve  ...[more]

Similar Datasets

| S-EPMC7019164 | biostudies-literature
| S-EPMC7985868 | biostudies-literature
| S-EPMC11375143 | biostudies-literature
| S-EPMC3207216 | biostudies-literature
| S-EPMC3367767 | biostudies-literature
| S-EPMC3235916 | biostudies-literature
| S-EPMC2601629 | biostudies-literature
| S-EPMC4667698 | biostudies-literature
| S-EPMC8827048 | biostudies-literature
| S-EPMC3685437 | biostudies-literature