Unknown

Dataset Information

0

Three-dimensional alginate hydrogels for radiobiological and metabolic studies of cancer cells.


ABSTRACT: The purpose of this study is to demonstrate calcium alginate hydrogels as a system for in vitro radiobiological and metabolic studies of cancer cells. Previous studies have established calcium alginate as a versatile three-dimensional (3D) culturing system capable of generating areas of oxygen heterogeneity and modeling metabolic changes in vitro. Here, through dosimetry, clonogenic and viability assays, and pimonidazole staining, we demonstrate that alginate can model radiobiological responses that monolayer cultures do not simulate. Notably, alginate hydrogels with radii greater than 500??m demonstrate hypoxic cores, while smaller hydrogels do not. The size of this hypoxic region correlates with hydrogel size and improved cell survival following radiation therapy. Hydrogels can also be utilized in hyperpolarized magnetic resonance spectroscopy and extracellular flux analysis. Alginate therefore offers a reproducible, consistent, and low-cost means for 3D culture of cancer cells for radiobiological studies that simulates important in vivo parameters such as regional hypoxia and enables long-term culturing and in vitro metabolic studies.

SUBMITTER: Read GH 

PROVIDER: S-EPMC6261367 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Three-dimensional alginate hydrogels for radiobiological and metabolic studies of cancer cells.

Read Graham H GH   Miura Natsuko N   Carter Jenna L JL   Kines Kelsey T KT   Yamamoto Kazutoshi K   Devasahayam Nallathamby N   Cheng Jason Y JY   Camphausen Kevin A KA   Krishna Murali C MC   Kesarwala Aparna H AH  

Colloids and surfaces. B, Biointerfaces 20180618


The purpose of this study is to demonstrate calcium alginate hydrogels as a system for in vitro radiobiological and metabolic studies of cancer cells. Previous studies have established calcium alginate as a versatile three-dimensional (3D) culturing system capable of generating areas of oxygen heterogeneity and modeling metabolic changes in vitro. Here, through dosimetry, clonogenic and viability assays, and pimonidazole staining, we demonstrate that alginate can model radiobiological responses  ...[more]

Similar Datasets

| S-EPMC4011430 | biostudies-literature
| S-EPMC7711489 | biostudies-literature
| S-EPMC9774270 | biostudies-literature
| S-EPMC10126516 | biostudies-literature
| S-EPMC6739834 | biostudies-literature
| S-EPMC5938583 | biostudies-literature
| S-EPMC7151014 | biostudies-literature
| S-EPMC3976766 | biostudies-literature
| S-EPMC4333346 | biostudies-literature
| S-EPMC4878142 | biostudies-literature