Unknown

Dataset Information

0

Real-world unexpected outcomes predict city-level mood states and risk-taking behavior.


ABSTRACT: Fluctuations in mood states are driven by unpredictable outcomes in daily life but also appear to drive consequential behaviors such as risk-taking. However, our understanding of the relationships between unexpected outcomes, mood, and risk-taking behavior has relied primarily upon constrained and artificial laboratory settings. Here we examine, using naturalistic datasets, how real-world unexpected outcomes predict mood state changes observable at the level of a city, in turn predicting changes in gambling behavior. By analyzing day-to-day mood language extracted from 5.2 million location-specific and public Twitter posts or 'tweets', we examine how real-world 'prediction errors'-local outcomes that deviate positively from expectations-predict day-to-day mood states observable at the level of a city. These mood states in turn predicted increased per-person lottery gambling rates, revealing how interplay between prediction errors, moods, and risky decision-making unfolds in the real world. Our results underscore how social media and naturalistic datasets can uniquely allow us to understand consequential psychological phenomena.

SUBMITTER: Otto AR 

PROVIDER: S-EPMC6261541 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Real-world unexpected outcomes predict city-level mood states and risk-taking behavior.

Otto A Ross AR   Eichstaedt Johannes C JC  

PloS one 20181128 11


Fluctuations in mood states are driven by unpredictable outcomes in daily life but also appear to drive consequential behaviors such as risk-taking. However, our understanding of the relationships between unexpected outcomes, mood, and risk-taking behavior has relied primarily upon constrained and artificial laboratory settings. Here we examine, using naturalistic datasets, how real-world unexpected outcomes predict mood state changes observable at the level of a city, in turn predicting changes  ...[more]

Similar Datasets

| S-EPMC7772865 | biostudies-literature
| S-EPMC9213430 | biostudies-literature
| S-EPMC10560015 | biostudies-literature
| S-EPMC4963605 | biostudies-literature
| S-EPMC5722954 | biostudies-literature
| S-EPMC7252228 | biostudies-literature
| S-EPMC9588046 | biostudies-literature
| S-EPMC4345583 | biostudies-literature
| S-EPMC5745301 | biostudies-literature
| S-EPMC6434408 | biostudies-other