Unknown

Dataset Information

0

Shifts of Hydrogen Metabolism From Methanogenesis to Propionate Production in Response to Replacement of Forage Fiber With Non-forage Fiber Sources in Diets in vitro.


ABSTRACT: The rumen microbial complex adaptive mechanism invalidates various methane (CH4) mitigation strategies. Shifting the hydrogen flow toward alternative electron acceptors, such as propionate, was considered to be a meaningful mitigation strategy. A completely randomized design was applied in in vitro incubation to investigate the effects of replacing forage fiber with non-forage fiber sources (NFFS) in diets on methanogenesis, hydrogen metabolism, propionate production and the methanogenic and bacterial community. There are two treatments in the current study, CON (a basic total mixed ration) and TRT (a modified total mixed ration). The dietary treatments were achieved by partly replacing forage fiber with NFFS (wheat bran and soybean hull) to decrease forage neutral detergent fiber (fNDF) content from 24.0 to 15.8%, with the composition and inclusion rate of other dietary ingredients remaining the same in total mixed rations. The concentrations of CH4, hydrogen (H2) and volatile fatty acids were determined using a gas chromatograph. The archaeal and bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the relative abundance of methanogenic and bacterial communities. The results revealed that the concentration of propionate was significantly increased, while the concentration of acetate and the acetate to propionate ratio were not affected by treatments. Compared with CON, the production of H2 increased by 8.45% and the production of CH4 decreased by 14.06%. The relative abundance of Methanomassiliicoccus was significantly increased, but the relative abundance of Methanobrevibacter tended to decrease in TRT group. At the bacterial phylum level, the TRT group significantly decreased the relative abundance of Firmicutes and tended to increase the relative abundance of Bacteroidetes. The replacement of forage fiber with NFFS in diets can affect methanogenesis by shifting the hydrogen flow toward propionate, and part is directed to H2 in vitro. The shift was achieved by a substitution of Firmicutes by Bacteroidetes, another substitution of Methanobrevibacter by Methanomassiliicoccus. Theoretical predictions of displacements of H2 metabolism from methanogenesis to propionate production was supported by the dietary intervention in vitro.

SUBMITTER: Wang K 

PROVIDER: S-EPMC6262304 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Shifts of Hydrogen Metabolism From Methanogenesis to Propionate Production in Response to Replacement of Forage Fiber With Non-forage Fiber Sources in Diets <i>in vitro</i>.

Wang Kun K   Nan Xuemei X   Chu Kangkang K   Tong Jinjin J   Yang Liang L   Zheng Shanshan S   Zhao Guangyong G   Jiang Linshu L   Xiong Benhai B  

Frontiers in microbiology 20181115


The rumen microbial complex adaptive mechanism invalidates various methane (CH<sub>4</sub>) mitigation strategies. Shifting the hydrogen flow toward alternative electron acceptors, such as propionate, was considered to be a meaningful mitigation strategy. A completely randomized design was applied in <i>in vitro</i> incubation to investigate the effects of replacing forage fiber with non-forage fiber sources (NFFS) in diets on methanogenesis, hydrogen metabolism, propionate production and the me  ...[more]

Similar Datasets

| S-EPMC4316778 | biostudies-literature
| S-EPMC7997879 | biostudies-literature
2015-05-09 | GSE21766 | GEO
2015-05-09 | E-GEOD-21766 | biostudies-arrayexpress
| S-EPMC7070664 | biostudies-literature
2017-06-09 | GSE78197 | GEO
| S-EPMC1270605 | biostudies-other
2016-11-21 | GSE79067 | GEO
| S-EPMC6140866 | biostudies-other
| S-EPMC10560149 | biostudies-literature