Unknown

Dataset Information

0

Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in Staphylococcus aureus Involves the Phosphotransferase System Transporter MurP and the Novel 6-phospho-N-acetylmuramidase MupG.


ABSTRACT: The peptidoglycan of the bacterial cell wall undergoes a permanent turnover during cell growth and differentiation. In the Gram-positive pathogen Staphylococcus aureus, the major peptidoglycan hydrolase Atl is required for accurate cell division, daughter cell separation and autolysis. Atl is a bifunctional N-acetylmuramoyl-L-alanine amidase/endo-?-N-acetylglucosaminidase that releases peptides and the disaccharide N-acetylmuramic acid-?-1,4-N-acetylglucosamine (MurNAc-GlcNAc) from the peptido-glycan. Here we revealed the recycling pathway of the cell wall turnover product MurNAc-GlcNAc in S. aureus. The latter disaccharide is internalized and concomitantly phosphorylated by the phosphotransferase system (PTS) transporter MurP, which had been implicated previously in the uptake and phosphorylation of MurNAc. Since MurP mutant cells accumulate MurNAc-GlcNAc and not MurNAc in the culture medium during growth, the disaccharide represents the physiological substrate of the PTS transporter. We further identified and characterized a novel 6-phospho-N-acetylmuramidase, named MupG, which intracellularly hydrolyses MurNAc 6-phosphate-GlcNAc, the product of MurP-uptake and phosphorylation, yielding MurNAc 6-phosphate and GlcNAc. MupG is the first characterized representative of a novel family of glycosidases containing domain of unknown function 871 (DUF871). The corresponding gene mupG (SAUSA300_0192) of S. aureus strain USA300 is the first gene within a putative operon that also includes genes encoding the MurNAc 6-phosphate etherase MurQ, MurP, and the putative transcriptional regulator MurR. Using mass spectrometry, we observed cytoplasmic accumulation of MurNAc 6-phosphate-GlcNAc in ?mupG and ?mupGmurQ markerless non-polar deletion mutants, but not in the wild type or in the complemented ?mupG strain. MurNAc 6-phosphate-GlcNAc levels in the mutants increased during stationary phase, in accordance with previous observations regarding peptidoglycan recycling in S. aureus.

SUBMITTER: Kluj RM 

PROVIDER: S-EPMC6262408 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in <i>Staphylococcus aureus</i> Involves the Phosphotransferase System Transporter MurP and the Novel 6-phospho-<i>N</i>-acetylmuramidase MupG.

Kluj Robert Maria RM   Ebner Patrick P   Adamek Martina M   Ziemert Nadine N   Mayer Christoph C   Borisova Marina M  

Frontiers in microbiology 20181116


The peptidoglycan of the bacterial cell wall undergoes a permanent turnover during cell growth and differentiation. In the Gram-positive pathogen <i>Staphylococcus aureus</i>, the major peptidoglycan hydrolase Atl is required for accurate cell division, daughter cell separation and autolysis. Atl is a bifunctional <i>N</i>-acetylmuramoyl-L-alanine amidase/endo-β-<i>N</i>-acetylglucosaminidase that releases peptides and the disaccharide <i>N</i>-acetylmuramic acid-β-1,4-<i>N</i>-acetylglucosamine  ...[more]

Similar Datasets

| S-EPMC2978608 | biostudies-literature
| S-EPMC3996572 | biostudies-literature
| S-EPMC3294825 | biostudies-literature
| S-EPMC7679415 | biostudies-literature
| S-EPMC3322828 | biostudies-other
| S-EPMC1347352 | biostudies-literature
| S-EPMC4981717 | biostudies-literature
| S-EPMC6021642 | biostudies-literature
| S-EPMC8054146 | biostudies-literature
| S-EPMC3013096 | biostudies-literature