Project description:ObjectivesTo define the prevalence and determinants of peripheral microvascular endothelial dysfunction (ED) in a large series of rheumatoid arthritis (RA) patients free of previous cardiovascular events.Materials and methodsData from 874 RA patients enrolled in the EDRA study (Endothelial Dysfunction Evaluation for Coronary Heart Disease Risk Estimation in Rheumatoid Arthritis-ClinicalTrials.gov: NCT02341066) were analyzed. Log-transformed reactive hyperemia index (Ln-RHI) was evaluated by peripheral arterial tonometry (PAT) using the EndoPAT2000 device: values of Ln-RHI < 0.51 were considered indicative of peripheral ED.ResultsPeripheral microvascular ED was documented in one-third of RA patients (33.5%); in multiple logistic regression analysis, ACPA negativity and higher triglycerides concentrations were independently associated with the presence of peripheral ED [OR (95% CI) = 1.708 (1.218-2.396), p < 0.01 and OR (95% CI) = 1.005 (1.002-1.009), p < 0.01, respectively]. Multiple regression analysis showed a positive correlation between Ln-RHI values and systolic blood pressure and HDL cholesterol levels; furthermore, higher values of Ln-RHI were associated with ACPA positivity, while smoking habit was associated with lower Ln-RHI values.ConclusionsThis study demonstrates for the first time a high prevalence of peripheral microvascular ED in patients with RA free of previous cardiovascular events that appear to be only partially driven by traditional cardiovascular risk factors. The association between ACPA negativity and ED warrants further exploration.
Project description:Although strong epidemiologic evidence suggests an important role for adaptive immunity in the pathogenesis of polyarticular juvenile rheumatoid arthritis (JRA), there remain many aspects of the disease that suggest equally important contributions of the innate immune system. We used gene expression arrays and computer modeling to examine the function in neutrophils of 25 children with polyarticular JRA. Computer analysis identified 712 genes that were differentially expressed between patients and healthy controls. Computer-assisted analysis of the differentially expressed genes demonstrated functional connections linked to both interleukin (IL)-8- and interferon-gamma (IFN-gamma)-regulated processes. Of special note is that the gene expression fingerprint of children with active JRA remained essentially unchanged even after they had responded to therapy. This result differed markedly from our previously reported work, in which gene expression profiles in buffy coats of children with polyarticular JRA reverted to normal after disease control was achieved pharmacologically. These findings suggest that JRA neutrophils remain in an activated state even during disease quiescence. Computer modeling of array data further demonstrated disruption of gene regulatory networks in clusters of genes modulated by IFN-gamma and IL-8. These cytokines have previously been shown to independently regulate the frequency (IFN-gamma) and amplitude (IL-8) of the oscillations of key metabolites in neutrophils, including nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and superoxide ion. Using real-time, high-speed, single-cell photoimaging, we observed that 6/6 JRA patients displayed a characteristic defect in 12% to 23% of the neutrophils tested. Reagents known to induce only frequency fluctuations of NAD(P)H and superoxide ion induced both frequency and amplitude fluctuations in JRA neutrophils. This is a novel finding that was observed in children with both active (n = 4) and inactive (n = 2) JRA. A subpopulation of polyarticular JRA neutrophils are in a chronic, activated state, a state that persists when the disease is well controlled pharmacologically. Furthermore, polyarticular JRA neutrophils exhibit an intrinsic defect in the regulation of metabolic oscillations and superoxide ion production. Our data are consistent with the hypothesis that neutrophils play an essential role in the pathogenesis of polyarticular JRA.
Project description:Immune cells are majorly dysregulated in rheumatoid arthritis patients and are a major cause of pathogenesis and progression of this autoimmune condition. As mitochondria are master regulators of metabolism of all cells present in human body, it is of prime importance to study mitochondrial homeostasis in immune cells for identifying any dysfunction contributing to pathogenesis or progression of RA. The objective of our study is to understand the mitochondrial and mitochondrially driven alterations in immune cells of RA patients which may cause them to perform abnormal functions and may have an important contribution in progression of the disease.
Project description:Chronic pain is a debilitating condition that occurs after tissue damage, which substantially affects the patient's emotional state and physical activity. The chronic pain in rheumatoid arthritis (RA) is the result of various autoimmune-induced inflammatory reactions in the joints. Both types of peripheral and central pain processing can lead to sensitisation. Non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs) can result in potent anti-inflammatory effect. However, these drugs are not able to suppress the pain from RA for a prolonged period. For years, researchers have examined the role of the N-methyl-D-aspartic acid receptor 2B (NR2B) subunit of N-methyl-D-aspartate receptors (NMDAR) in chronic and neuropathic pain models. This NMDAR subtype can be found in at the peripheral and central nervous system and it represents an effective therapy for RA pain management. This review focuses on the NR2B subunit of NMDAR and the different pathways leading to its activation. Furthermore, specific attention is given to the possible involvement of NR2B subunit in the peripheral and central pathogenesis of RA.
Project description:BackgroundThe goal of this study was to assess the prevalence of myocardial microvascular dysfunction in rheumatoid arthritis (RA) patients without clinical cardiovascular disease and its association with RA characteristics and measures of cardiac structure and function.MethodsParticipants with RA underwent rest and vasodilator stress N-13 ammonia positron emission tomography and echocardiography. Global myocardial blood flow was quantified at rest and during peak hyperemia. Myocardial flow reserve (MFR) was calculated as peak stress myocardial blood flow/rest myocardial blood flow. A small number of asymptomatic and symptomatic non-RA controls were also evaluated.ResultsIn RA patients, mean±SD MFR was 2.9±0.8, with 29% having reduced MFR (<2.5). Male sex and higher interleukin-6 were significantly associated with lower MFR, while the use of tumor necrosis factor inhibitors was associated with higher MFR. Lower MFR was associated with higher left ventricle mass index and higher left ventricle volumes but not with ejection fraction or diastolic dysfunction. RA and symptomatic controls had comparable MFR (mean±SD: 2.9±0.8 versus 2.55±0.6; P=0.48). In contrast, MFR was higher in the asymptomatic controls (mean±SD: 3.25±0.7) although not statistically different.ConclusionsReduced MFR was observed in a third of RA patients without clinical cardiovascular disease and was associated with a measure of inflammation and with higher left ventricle mass and volumes. MFR in RA patients was similar to controls referred for clinical scans (symptomatic controls). Whether reduced MFR contributes to the increased risk for heart failure in RA remains unknown.
Project description:Rheumatoid arthritis (RA) is a chronic inflammatory condition characterised by reduced heart rate variability (HRV) of unknown cause. We tested the hypothesis that low HRV, indicative of cardiac autonomic cardiovascular dysfunction, was associated with systemic inflammation and pain. Given the high prevalence of hypertension (HTN) in RA, a condition itself associated with low HRV, we also assessed whether the presence of hypertension further reduced HRV in RA.In RA-normotensive (n=13), RA-HTN (n=17), normotensive controls (NC; n=17) and HTN (n=16) controls, blood pressure and heart rate were recorded. Time and frequency domain measures of HRV along with serological markers of inflammation (high sensitivity C-reactive protein [hs-CRP], tumour necrosis factor-? [TNF-?] and interleukins [IL]) were determined. Reported pain was assessed using a visual analogue scale.Time (rMSSD, pNN50%) and frequency (high frequency power, low frequency power, total power) domain measures of HRV were lower in the RA, RA-HTN and HTN groups, compared to NC (p=0.001). However, no significant differences in HRV were noted between the RA, RA-HTN and HTN groups. Inverse associations were found between time and frequency measures of HRV and inflammatory cytokines (IL-6 and IL-10), but were not independent after multivariable analysis. hs-CRP and pain were independently and inversely associated with time domain (rMMSD, pNN50%) parameters of HRV.These findings suggest that lower HRV is associated with increased inflammation and independently associated with increased reported pain, but not compounded by the presence of HTN in patients with RA.
Project description:BACKGROUND:Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. METHODS:24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. RESULTS:When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. CONCLUSION:Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients.
Project description:PurposeRheumatoid arthritis (RA) is the most common inflammatory joint disease, and hydroxychloroquine (HCQ) is an established treatment. The extent to which HCQ impacts ocular microvascular vessel density (VD) in patients with RA without evidence of HCQ retinopathy has not yet been conclusively clarified. The main aim of this study was to evaluate VD measured by optical coherence tomography angiography (OCTA) in patients with RA treated with HCQ.MethodsThe VD data of the 3 × 3 mm OCT angiogram (RTVue XR Avanti, Optovue Inc., Fremont, California, USA) as well as the retinal thickness (RT) data of patients with RA (n = 30) and healthy controls (n = 30) were extracted and analyzed. The study group was further divided into patients undergoing HCQ treatment for > 5 years (high-risk-group) and < 5 years (low-risk group).ResultsPatients with RA showed no evidence of VD reduction compared to the control group in all obtained regions (p > 0.05). Correlation analysis revealed no dependency between VD, RT, and HCQ therapy duration or cumulative HCQ dose (p > 0.05). High-risk patients showed a decreased VD in the superficial quadrant of the superficial capillary plexus compared to low-risk-patients (p = 0.022). Whole-en-face RT was reduced in the high-risk group compared to the control group (p = 0.019).ConclusionOur study showed no evidence that HCQ diminishes VD in patients with RA without HCQ retinopathy measured by OCTA. However, RA patients with a long duration of therapy showed a significantly reduced RT. Our results suggest that quantitative VD analysis by OCTA may not be suitable for early detection of HCQ retinopathy and that the focus on detecting early HCQ retinopathy should be on intensive and sequential OCT diagnostics.
Project description:Background: Thyroid dysfunction seems to be common among rheumatoid arthritis (RA) patients, but the risk of thyroid dysfunction in RA has not been well-defined.Methods: We performed a case-control study of 65 RA patients and 550 matched non-RA subjects to assess the risk of thyroid dysfunction among Chinese RA patients. A systematic review and meta-analysis was also conducted to comprehensively define the relationship between RA and thyroid dysfunction.Results: The case-control study indicated that the prevalence of thyroid dysfunction was significantly higher in RA patients than controls (OR = 2.89, P < 0.001). Further subgroup analyses revealed positive correlations of RA with hypothyroidism (OR = 2.28, P = 0.006) and hyperthyroidism (OR = 8.95, P < 0.001). Multivariate logistic regression analysis revealed an independent association between RA and thyroid dysfunction (Adjusted OR = 2.89, 95%CI 1.63–5.12, P < 0.001). Meta-analysis of 15 independent studies also showed an obviously increased risk of thyroid dysfunction among RA patients (RR = 2.86, 95%CI 1.78–4.58, P < 0.001). Further subgroup analysis showed RA could obviously increase risk of hyperthyroidism (RR = 2.73, 95%CI 1.29–5.77, P = 0.043) and hypothyroidism (RR = 2.02, 95%CI 1.49–2.74, P < 0.001).Conclusion: Our study provides strong evidence for the increased risk of thyroid dysfunction among RA patients. Screening of thyroid dysfunction may be recommended for RA patients.
Project description:Spinal glial reaction and proinflammatory cytokine induction play an important role in the development of chronic pain states after tissue and nerve injury. The present study investigated the cellular and molecular mechanisms underlying descending facilitation of neuropathic pain with an emphasis on supraspinal glial-neuronal relationships. An early and transient reaction of microglia and prolonged reaction of astrocytes were found after chronic constriction injury (CCI) of the rat infraorbital nerve in the rostral ventromedial medulla (RVM), a major component of brainstem descending pain modulatory circuitry. There were prolonged elevations of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) after CCI, and they were expressed in RVM astrocytes at 14 d after injury. Intra-RVM injection of microglial and astrocytic inhibitors attenuated mechanical hyperalgesia and allodynia at 3 and 14 d after CCI, respectively. Moreover, TNFR1 and IL-1R, receptors for TNF-alpha and IL-1beta, respectively, were expressed primarily in RVM neurons exhibiting immunoreactivity to the NMDA receptor (NMDAR) subunit NR1. CCI increased TNFR1 and IL-1R levels and NR1 phosphorylation in the RVM. Neutralization of endogenous TNF-alpha and IL-1beta in the RVM significantly reduced CCI-induced behavioral hypersensitivity and attenuated NR1 phosphorylation. Finally, intra-RVM administration of recombinant TNF-alpha or IL-1beta upregulated NR1 phosphorylation and caused a reversible and NMDAR-dependent allodynia in normal rats, further suggesting that TNF-alpha and IL-1beta couple glial hyperactivation with NMDAR function. These studies have addressed a novel contribution of supraspinal astrocytes and associated cytokines as well as central glial-neuronal interactions to the enhancement of descending facilitation of neuropathic pain.