Unknown

Dataset Information

0

Decreasing Frequency Splits of Hemispherical Resonators by Chemical Etching.


ABSTRACT: The hemispherical resonator gyroscope (HRG) has attracted the interest of the world inertial navigation community because of its exceptional performance, ultra-high reliability and its potential to be miniaturized. These devices achieve their best performance when the differences in the frequencies of the two degenerate working modes are eliminated. Mechanical treatment, laser ablation, ion-beams etching, etc., have all been applied for the frequency tuning of resonators, however, they either require costly equipment and procedures, or alter the quality factors of the resonators significantly. In this paper, we experimentally investigated for the first time the use of a chemical etching procedure to decrease the frequency splits of hemispherical resonators. We provide a theoretical analysis of the chemical etching procedure, as well as the relation between frequency splits and mass errors. Then we demonstrate that the frequency split could be decreased to below 0.05 Hz by the proposed chemical etching procedure. Results also showed that the chemical etching method caused no damage to the quality factors. Compared with other tuning methods, the chemical etching method is convenient to implement, requiring less time and labor input. It can be regarded as an effective trimming method for obtaining medium accuracy hemispherical resonator gyroscopes.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC6263873 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Decreasing Frequency Splits of Hemispherical Resonators by Chemical Etching.

Wang Yuting Y   Pan Yao Y   Qu Tianliang T   Jia Yonglei Y   Yang Kaiyong K   Luo Hui H  

Sensors (Basel, Switzerland) 20181105 11


The hemispherical resonator gyroscope (HRG) has attracted the interest of the world inertial navigation community because of its exceptional performance, ultra-high reliability and its potential to be miniaturized. These devices achieve their best performance when the differences in the frequencies of the two degenerate working modes are eliminated. Mechanical treatment, laser ablation, ion-beams etching, etc., have all been applied for the frequency tuning of resonators, however, they either re  ...[more]

Similar Datasets

| S-EPMC5286200 | biostudies-literature
| S-EPMC3499260 | biostudies-literature
| S-EPMC6391039 | biostudies-literature
| S-EPMC7558603 | biostudies-literature
| S-EPMC8708015 | biostudies-literature
| S-EPMC3778514 | biostudies-other
| S-EPMC6189811 | biostudies-other
| S-EPMC5134325 | biostudies-literature
| S-EPMC7867348 | biostudies-literature
| S-EPMC6776525 | biostudies-literature