Intronic miR-744 Inhibits Glioblastoma Migration by Functionally Antagonizing Its Host Gene MAP2K4.
Ontology highlight
ABSTRACT: BACKGROUND:The second intron of Mitogen-Activated Protein Kinase Kinase 4 (MAP2K4), an important hub in the pro-invasive MAPK pathway, harbors miR-744. There is accumulating evidence that intronic micro-RNAs (miRNAs) are capable of either supporting or restraining functional pathways of their host genes, thereby creating intricate regulative networks. We thus hypothesized that miR-744 regulates glioma migration by interacting with its host's pathways. METHODS:Patients' tumor specimens were obtained stereotactically. MiR-744 was overexpressed in U87, T98G, and primary glioblastoma (GBM) cell lines. Cell mobility was studied using migration and Boyden chamber assays. Protein and mRNA expression was quantified by SDS-PAGE and qRT-PCR. Interactions of miR-744 and 3'UTRs were analyzed by luciferase reporter assays, and SMAD2/3, p38, and beta-Catenin activities by TOP/FOPflash reporter gene assays. RESULTS:As compared to a normal brain, miR-744 levels were dramatically decreased in GBM samples and in primary GBM cell lines. Astrocytoma WHO grade II/III exhibited intermediate expression levels. Re-expression of miR-744 in U87, T98G, and primary GBM cell lines induced focal growth and impaired cell mobility. Luciferase activity of 3'UTR reporter constructs revealed the pro-invasive factors TGFB1 and DVL2 as direct targets of miR-744. Re-expression of miR-744 reduced levels of TGFB1, DVL2, and the host MAP2K4, and mitigated activity of TGFB1 and DVL2 downstream targets SMAD2/3 and beta-Catenin. TGFB1 knock-down repressed MAP2K4 expression. CONCLUSION:MiR-744 acts as an intrinsic brake on its host. It impedes MAP2K4 functional pathways through simultaneously targeting SMAD-, beta-Catenin, and MAPK signaling networks, thereby strongly mitigating pro-migratory effects of MAP2K4. MiR-744 is strongly repressed in glioma, and its re-expression might attenuate tumor invasiveness.
SUBMITTER: Hubner M
PROVIDER: S-EPMC6266622 | biostudies-literature | 2018 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA