Unknown

Dataset Information

0

Probing early misfolding events in prion protein mutants by NMR spectroscopy.


ABSTRACT: The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform encephalopathies (TSEs) and affect both humans and animals. A prerequisite for understanding TSEs is unraveling the molecular mechanism leading to the conversion process whereby most ?-helical motifs are replaced by ?-sheet secondary structures. Importantly, most point mutations linked to inherited prion diseases are clustered in the C-terminal domain region of PrPC and cause spontaneous conversion to PrPSc. Structural studies with PrP variants promise new clues regarding the proposed conversion mechanism and may help identify "hot spots" in PrPC involved in the pathogenic conversion. These investigations may also shed light on the early structural rearrangements occurring in some PrPC epitopes thought to be involved in modulating prion susceptibility. Here we present a detailed overview of our solution-state NMR studies on human prion protein carrying different pathological point mutations and the implications that such findings may have for the future of prion research.

SUBMITTER: Giachin G 

PROVIDER: S-EPMC6270549 | biostudies-literature | 2013 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Probing early misfolding events in prion protein mutants by NMR spectroscopy.

Giachin Gabriele G   Biljan Ivana I   Ilc Gregor G   Plavec Janez J   Legname Giuseppe G  

Molecules (Basel, Switzerland) 20130807 8


The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform encephalopathies (TSEs) and affect both humans and animals. A prerequisite for understanding TSEs is unraveling the molecular mechanism leading to the conversion process whereby most α-helical motifs are replaced by β-sheet secondary stru  ...[more]

Similar Datasets

| S-EPMC9667828 | biostudies-literature
| S-EPMC3330701 | biostudies-literature
| S-EPMC5111666 | biostudies-literature
| S-EPMC5705391 | biostudies-literature
| S-EPMC7030917 | biostudies-literature
| S-EPMC7496880 | biostudies-literature
| S-EPMC2978619 | biostudies-literature
| S-EPMC3042553 | biostudies-literature
| S-EPMC1557509 | biostudies-literature
| S-EPMC9091488 | biostudies-literature