Unknown

Dataset Information

0

Novel Selective and Potent EGFR Inhibitor that Overcomes T790M-Mediated Resistance in Non-Small Cell Lung Cancer.


ABSTRACT: Treating patients suffering from EGFR mutant non-small cell lung cancer (NSCLC) with first-generation EGFR tyrosine kinase inhibitors (EGFR TKI) provides excellent response rates. However, approximately 60% of all patients ultimately develop drug resistance due to a second T790M EGFR TKI mutation. In this study, we report the novel molecule N-(3-((5-chloro-2-(4-((1-morpholino)methyl)phenylamino)-4-pyrimidinyl)amino)phenyl)acrylamide (DY3002) to preferentially inhibit the EGFR T790M mutant (EGFRT790M) (IC50 = 0.71 nM) over wild-type EGFR (IC50 = 448.7 nM) in kinase assays. Compared to rociletinib (SI = 21.4) and osimertinib (SI = 40.9), it significantly increased selectivity (SI = 632.0) against EGFRT790M over wild-type EGFR. Furthermore, in cell-based tests, DY3002, with an IC50 value of 0.037 ?M, exhibited enhanced inhibitory potency against H1975 cells. Moreover, AO/EB and DAPI staining assays as well as flow cytometer analyses indicated that DY3002 possesses superior biological properties compared to alternatives. In addition, a rat oral glucose tolerance test revealed that treatment with high drug doses (50 mg/kg) of DY3002 did not result in hyperglycemia, suggesting a reduction of side effects in NSCLC patients will be achievable relative to established EGFR inhibitors. In summary, our findings indicate DY3002 as a promising preclinical candidate for effective treatment of patients with EGFRT790M-mutated NSCLC.

SUBMITTER: Li Y 

PROVIDER: S-EPMC6274483 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel Selective and Potent EGFR Inhibitor that Overcomes T790M-Mediated Resistance in Non-Small Cell Lung Cancer.

Li Yanxia Y   Song Zhendong Z   Jin Yue Y   Tang Zeyao Z   Kang Jian J   Ma Xiaodong X  

Molecules (Basel, Switzerland) 20161102 11


Treating patients suffering from EGFR mutant non-small cell lung cancer (NSCLC) with first-generation EGFR tyrosine kinase inhibitors (EGFR TKI) provides excellent response rates. However, approximately 60% of all patients ultimately develop drug resistance due to a second T790M EGFR TKI mutation. In this study, we report the novel molecule <i>N</i>-(3-((5-chloro-2-(4-((1-morpholino)methyl)phenylamino)-4-pyrimidinyl)amino)phenyl)acrylamide (DY3002) to preferentially inhibit the EGFR T790M mutant  ...[more]

Similar Datasets

| S-EPMC8668973 | biostudies-literature
| S-EPMC4048995 | biostudies-literature
| S-EPMC4315625 | biostudies-literature
| S-EPMC8111447 | biostudies-literature
| S-EPMC3272303 | biostudies-literature
| S-EPMC5911580 | biostudies-literature
| S-EPMC6742540 | biostudies-literature
| S-EPMC5800871 | biostudies-literature
| S-EPMC4741788 | biostudies-literature
| S-EPMC2859699 | biostudies-literature