Project description:The emergence of tyrosine kinase inhibitors as part of a front-line treatment has greatly improved the clinical outcome of the patients with Ph+ acute lymphoblastic leukemia (ALL). However, a portion of them still become refractory to the therapy mainly through acquiring mutations in the BCR-ABL1 gene, necessitating a novel strategy to treat tyrosine kinase inhibitor (TKI)-resistant Ph+ ALL cases. In this report, we show evidence that RUNX1 transcription factor stringently controls the expression of BCR-ABL1, which can strategically be targeted by our novel RUNX inhibitor, Chb-M'. Through a series of in vitro experiments, we identified that RUNX1 binds to the promoter of BCR and directly transactivates BCR-ABL1 expression in Ph+ ALL cell lines. These cells showed significantly reduced expression of BCR-ABL1 with suppressed proliferation upon RUNX1 knockdown. Moreover, treatment with Chb-M' consistently downregulated the expression of BCR-ABL1 in these cells and this drug was highly effective even in an imatinib-resistant Ph+ ALL cell line. In good agreement with these findings, forced expression of BCR-ABL1 in these cells conferred relative resistance to Chb-M'. In addition, in vivo experiments with the Ph+ ALL patient-derived xenograft cells showed similar results. In summary, targeting RUNX1 therapeutically in Ph+ ALL cells may lead to overcoming TKI resistance through the transcriptional regulation of BCR-ABL1. Chb-M' could be a novel drug for patients with TKI-resistant refractory Ph+ ALL.
Project description:BCR-ABL1 tyrosine kinase inhibitors (TKIs) are the cornerstone of treatment in chronic myeloid leukemia. Although there are now four TKIs approved for use in the front-line setting, acquired TKI resistance via secondary kinase domain mutations remains a problem for patients. K0706 is a novel BCR-ABL1 TKI currently under clinical investigation with structural elements similar to those of ponatinib and dasatinib. In this article, we functionally characterize the anti-leukemic activity of K0706 using cell proliferation assays in conjunction with drug resistance screening. We provide details from molecular modeling to support our in vitro findings and additionally describe our limited clinical experience with this drug in two patients treated on trial. We demonstrate that although K0706 retains efficacy against a large spectrum of clinically relevant mutations, it does not appear to have activity against BCR-ABL1T315I. Early trial experience suggests excellent tolerability, which may positively affect the place of K0706 within the ever-expanding chronic myeloid leukemia treatment paradigm.
Project description:BackgroundStandards play an important role in detection of the BCR-ABL1 fusion gene (FG) transcript. However, the standards widely used in laboratories are mainly based on plasmids or cDNA, which cannot accurately reflect the process of RNA extraction and cDNA synthesis. Therefore, we aimed to develop armored RNA-based standards for p210 and p190 BCR-ABL1FG transcripts' quantification.MethodsUsing overlapping polymerase chain reaction (PCR) technology, we first linked a segment of the p210 or p190 BCR-ABL1FG transcript with four control genes (CGs; ABL1, BCR, GUSB, and B2M) to form p210FG-CG and p190FG-CG. Subsequently, using armored RNA technology, we prepared p210FG-CG- and p190FG-CG-armored RNAs and the p210FG-CG and p190FG-CG standards, the values of which were assigned by digital PCR (dPCR).ResultsThe p210FG-CG and p190FG-CG standards were stable and homogeneous, and were significantly linear with r2 > 0.98. A field trial including 52 laboratories across China showed that the coefficient of variation (CV%) of BCR-ABL1 values among samples was in the range of 58.6%-129.6% for p210 samples and 73.2%-194.0% for p190 samples when using local standards. By contrast, when using the p210FG-CG and p190FG-CG standards, the CV% of BCR-ABL1 values was decreased to 35.6%-124.9% and 36.6%-170.6% for p210 and p190 samples, respectively. In addition, 33.3% (3/9) of the p210 and p190 samples had CV% values <50.0%, whereas 44.4% (4/9) and 77.8% (7/9) of the samples had lower CV% values when using the p210FG-CG and p190FG-CG standards.ConclusionThe overall variability of detection of BCR-ABL1 transcripts decreased significantly when using the p210FG-CG or p190FG-CG standards, especially the p190FG-CG standard.
Project description:BCR-ABL1 fusion gene is the driver mutation of Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL). Although the prognostic value of BCR-ABL1 isoforms in Ph+ ALL patients has been investigated in numerous studies in the tyrosine kinase inhibitor (TKI) era, the results were still conflicting. Hence we performed herein the meta-analysis to comprehensively assess the impact of BCR-ABL1 isoforms on the clinical outcomes of Ph+ ALL patients. Systematic literature review was conducted in PubMed, Embase, and Cochrane databases with the data access date up to June 15, 2020. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated with fixed-effects or random-effects models. Furthermore, subgroup analyses were performed to assess the robustness of the associations. Nine studies with a total number of 1582 patients were eligible for this meta-analysis. Combined HRs suggested that p210 was slightly associated with inferior event-free survival (EFS) (HR = 1.34, 95% CI 1.05-1.72). The overall survival (OS) was not significantly affected (HR = 1.15, 95% CI 0.92-1.45). In subgroup analyses, the HRs showed a trend toward adverse impact of p210 on clinical outcomes. However, the confidence intervals were not crossing the null value only in a minority of subgroups including Caucasian studies, first-generation TKI treated cohort and transplant cohort. Our findings suggested that p210 might pose a mild adverse impact on the EFS of Ph+ ALL patients. This effect might be compromised by the use of second- or third-generation TKIs. Further studies are needed to verify our conclusions.
Project description:The Philadelphia (Ph) chromosome was the first translocation identified in leukemia. It is supposed to be generated by aberrant ligation between two DNA double-strand breaks (DSBs) at the BCR gene located on chromosome 9q34 and the ABL1 gene located on chromosome 22q11. Thus, mimicking the initiation process of translocation, we induced CRISPR/Cas9-mediated DSBs simultaneously at the breakpoints of the BCR and ABL1 genes in a granulocyte-macrophage colony-stimulating factor (GM-CSF) dependent human leukemia cell line. After transfection of two single guide RNAs (sgRNAs) targeting intron 13 of the BCR gene and intron 1 of the ABL1 gene, a factor-independent subline was obtained. In the subline, p210 BCR::ABL1 and its reciprocal ABL1::BCR fusions were generated as a result of balanced translocation corresponding to the Ph chromosome. Another set of sgRNAs targeting intron 1 of the BCR gene and intron 1 of the ABL1 gene induced a factor-independent subline expressing p190 BCR::ABL1. Both p210 and p190 BCR::ABL1 induced factor-independent growth by constitutively activating intracellular signaling pathways for transcriptional regulation of cell cycle progression and cell survival that are usually regulated by GM-CSF. These observations suggested that simultaneous DSBs at the BCR and ABL1 gene breakpoints are initiation events for oncogenesis in Ph+ leukemia. (200/200 words).
Project description:Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) represents the most common genetic subtype of adult ALL (20%-30%) and accounts for approximately 50% of all cases in the elderly. It has been considered the subgroup of ALL with the worst outcome. The introduction of tyrosine kinase inhibitors (TKIs) allows complete hematologic remission virtually in all patients, with improved disease-free survival and overall survival. Nevertheless, the emergence of resistant mutations in BCR-ABL1 may require different TKI strategies to overcome the patient's resistance and disease relapse. Here, we report a Ph+B-ALL case with persistent minimal residual disease (MRD) after treatment with dasatinib. The patient expressed the P190BCR-ABL1 isoform and a novel BCR-ABL1 mutation, p.Y440C. The latter is in the C-terminal lobe of the kinase domain, which likely induces deviations in the protein structure and activity and destabilizes its inactive conformation. The treatment was substituted by bosutinib, which binds to the active conformation of the protein, prior to allogeneic bone marrow transplant to overcome the lack of a complete response to dasatinib. These findings strengthen the importance of BCR-ABL1 mutational screening in Ph+ patients, particularly for those who do not achieve complete molecular remission.
Project description:BackgroundAdhesion of cancer cells to extracellular matrix laminin through the integrin superfamily reportedly induces drug resistance. Heterodimers of integrin α6 (CD49f) with integrin β1 (CD29) or β4 (CD104) are major functional receptors for laminin. Higher CD49f expression is reportedly associated with a poorer response to induction therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Moreover, a xenograft mouse model transplanted with primary BCP-ALL cells revealed that neutralized antibody against CD49f improved survival after chemotherapy.AimsConsidering the poor outcomes in Philadelphia chromosome (Ph)-positive ALL treated with conventional chemotherapy without tyrosine kinase inhibitors, we sought to investigate an involvement of the laminin adhesion.Methods and resultsPh-positive ALL cell lines expressed the highest levels of CD49f among the BCP-ALL cell lines with representative translocations, while CD29 and CD104 were ubiquitously expressed in BCP-ALL cell lines. The association of Ph-positive ALL with high levels of CD49f gene expression was also confirmed in two databases of childhood ALL cohorts. Ph-positive ALL cell lines attached to laminin and their laminin-binding properties were disrupted by blocking antibodies against CD49f and CD29 but not CD104. The cell surface expression of CD49f, but not CD29 and CD104, was downregulated by imatinib treatment in Ph-positive ALL cell lines, but not in their T315I-acquired sublines. Consistently, the laminin-binding properties were disrupted by the imatinib pre-treatment in the Ph-positive ALL cell line, but not in its T315I-acquired subline.ConclusionBCR::ABL1 plays an essential role in the laminin adhesion of Ph-positive ALL cells through upregulation of CD49f.
Project description:Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB) protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1. Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors.
Project description:Assessment of measurable residual disease (MRD) has emerged as a powerful prognostic tool in pediatric and adult acute lymphoblastic leukemia (ALL). In this single-centre retrospective study, we evaluated the prognostic relevance of MRD based on BCR-ABL1 copy numbers in Ph + ALL patients between 2006 and 2018. Molecular responses were evaluated at 3, 6, 9 and 12 months after the initiation of treatment. Patients who had their MRD assessed at three or more time points were categorized into MRD good risk or poor risk based on BCR-ABL1/ABL1 copy number ratio. MRD positive patients consistently showed a trend toward poor survival and on multivariate analysis, MRD poor risk patients had adverse outcomes when compared to MRD good risk patients in terms of overall (OS; p = .031) and event-free (EFS; p < .001) survival. In conclusion, molecular MRD based on BCR-ABL1 copy number ratio is an ideal prognostic indicator in Ph + ALL patients undergoing treatment.