Project description:The mucosal epithelia of the ocular surface protect against external threats to the eye. Using a model of human stratified corneal epithelial cells with mucosal differentiation, we previously demonstrated that a small molecule inhibitor of dynamin GTPases, dynasore, prevents damage to cells and their transcellular barriers when subjected to oxidative stress. Investigating mechanisms, we now report the novel finding that dynasore acts by maintaining Ca+2 homeostasis, thereby inhibiting the PERK branch of the unfolded protein response (UPR) that promotes cell death. Dynasore was found to protect mitochondria by preventing mitochondrial permeability transition pore opening (mPTP), but, unlike reports using other systems, this was not mediated by dynamin family member DRP1. Necrostatin-1, an inhibitor of RIPK1 and lytic forms of programmed cell death, also inhibited mPTP opening and further protected the plasma membrane barrier. Significantly, necrostatin-1 did not protect the mucosal barrier. Oxidative stress increased mRNA for sXBP1, a marker of the IRE1 branch of the UPR, and CHOP, a marker of the PERK branch. It also stimulated phosphorylation of eIF2α, the upstream regulator of CHOP, as well as an increase in intracellular Ca2+. Dynasore selectively inhibited the increase in PERK branch markers, and also prevented the increase intracellular Ca2+ in response to oxidative stress. The increase in PERK branch markers were also inhibited when cells were treated with the cell permeable Ca2+ chelator, BAPTA-AM. To our knowledge, this is the first time that dynasore has been shown to have an effect on the UPR and suggests therapeutic applications.
Project description:Visual deficits are a common concern among subjects with head trauma. Stem cell therapies have gained recent attention in treating visual deficits following head trauma. Previously, we have shown that adipose-derived stem cell (ASC) concentrated conditioned medium (ASC-CCM), when delivered via an intravitreal route, yielded a significant improvement in vision accompanied by a decrease in retinal neuroinflammation in a focal cranial blast model that indirectly injures the retina. The purpose of the current study is to extend our previous studies to a direct ocular blast injury model to further establish the preclinical efficacy of ASC-CCM. Adult C57BL/6J mice were subjected to repetitive ocular blast injury (rOBI) of 25 psi to the left eye, followed by intravitreal delivery of ASC-CCM (∼200 ng protein/2 μl) or saline within 2-3 h. Visual function and histological changes were measured 4 weeks after injury and treatment. In vitro, Müller cells were used to evaluate the antioxidant effect of ASC-CCM. Visual acuity, contrast sensitivity, and b-wave amplitudes in rOBI mice receiving saline were significantly decreased compared with age-matched sham blast mice. Immunohistological analyses demonstrated a significant increase in glial fibrillary acidic protein (a retinal injury marker) in Müller cell processes, DNA/RNA damage, and nitrotyrosine (indicative of oxidative stress) in the retina, while qPCR analysis revealed a >2-fold increase in pro-inflammatory cytokines (TNF-α, ICAM1, and Ccl2) in the retina, as well as markers for microglia/macrophage activation (IL-1β and CD86). Remarkably, rOBI mice that received ASC-CCM demonstrated a significant improvement in visual function compared to saline-treated rOBI mice, with visual acuity, contrast sensitivity, and b-wave amplitudes that were not different from those in sham mice. This improvement in visual function also was associated with a significant reduction in retinal GFAP, neuroinflammation markers, and oxidative stress compared to saline-treated rOBI mice. In vitro, Müller cells exposed to oxidative stress via increasing doses of hydrogen peroxide demonstrated decreased viability, increased GFAP mRNA expression, and reduced activity for the antioxidant catalase. On the other hand, oxidatively stressed Müller cells pre-incubated with ASC-CCM showed normalized GFAP, viability, and catalase activity. In conclusion, our study demonstrates that a single intravitreal injection of ASC-CCM in the rOBI can significantly rescue retinal injury and provide significant restoration of visual function. Our in vitro studies suggest that the antioxidant catalase may play a major role in the protective effects of ASC-CCM, uncovering yet another aspect of the multifaceted benefits of ASC secretome therapies in neurotrauma.
Project description:The yeast transcriptomic response to quercetin, a naturally-occurring flavonol with antioxidant, anticancer and anti-ageing activities, was evaluated by differential gene expression analysis using a microarray containing probes for S. cerevisiae ORFeome. Samples obtained from BY4741 strain cells treated with 300uM quercetin were compared to control samples (obtained from cells incubated with vehicle) on dual-color microarray experiments. Three independent biological replicates and the respective dye-swap hybridizations were combined, in a total of 6 microarray hybridizations.
Project description:The introduction of apo-ferritin or the iron chelator DFO (desferrioxamine) conjugated to starch into the lysosomal compartment protects cells against oxidative stress, lysosomal rupture and ensuing apoptosis/necrosis by binding intralysosomal redox-active iron, thus preventing Fenton-type reactions and ensuing peroxidation of lysosomal membranes. Because up-regulation of MTs (metallothioneins) also generates enhanced cellular resistance to oxidative stress, including X-irradiation, and MTs were found to be capable of iron binding in an acidic and reducing lysosomal-like environment, we propose that these proteins might similarly stabilize lysosomes following autophagocytotic delivery to the lysosomal compartment. Here, we report that Zn-mediated MT up-regulation, assayed by Western blotting and immunocytochemistry, results in lysosomal stabilization and decreased apoptosis following oxidative stress, similar to the protection afforded by fluid-phase endocytosis of apo-ferritin or DFO. In contrast, the endocytotic uptake of an iron phosphate complex destabilized lysosomes against oxidative stress, but this was suppressed in cells with up-regulated MT. It is suggested that the resistance against oxidative stress, known to occur in MT-rich cells, may be a consequence of autophagic turnover of MT, resulting in reduced iron-catalysed intralysosomal peroxidative reactions.
Project description:BACKGROUND AND PURPOSE: Maintaining a delicate balance between the generation of nitric oxide (NO) and removal of reactive oxygen species (ROS) within the vascular wall is crucial to the physiological regulation of vascular tone. Increased production of ROS reduces the effect and/or bioavailability of NO, leading to an impaired endothelial function. This study tested the hypothesis that raloxifene, a selective oestrogen receptor modulator, can prevent endothelial dysfunction under oxidative stress. EXPERIMENTAL APPROACH: Changes in isometric tension were measured in rat aortic rings. The content of cyclic GMP in aortic tissue was determined by radioimmunoassay. Phosphorylation of endothelial NOS (eNOS) and Akt was assayed by Western blot analysis. KEY RESULTS: In rings with endothelium, ACh-induced relaxations were attenuated by a ROS-generating reaction (hypoxanthine plus xanthine oxidase, HXXO). The impaired relaxations were ameliorated by acute treatment with raloxifene. HXXO suppressed the ACh-stimulated increase in cyclic GMP levels; this effect was antagonized by raloxifene. The improved endothelial function by raloxifene was abolished by ICI 182,780, and by wortmannin or LY294002. Raloxifene also protected endothelial cell function against H2O2. Raloxifene increased the phosphorylation of eNOS at Ser-1177 and Akt at Ser-473; this effect was blocked by ICI 182,780. Finally, raloxifene was not directly involved in scavenging ROS, and neither inhibited the activity of xanthine oxidase nor stimulated that of superoxide dismutase. CONCLUSION AND IMPLICATIONS: Raloxifene is effective against oxidative stress-induced endothelial dysfunction in vitro through an ICI 182,780-sensitive mechanism that involves the increased phosphorylation and activity of Akt and eNOS in rat aortae.
Project description:Accurate flow of genetic information from DNA to protein requires faithful translation. An increased level of translational errors (mistranslation) has therefore been widely considered harmful to cells. Here we demonstrate that surprisingly, moderate levels of mistranslation indeed increase tolerance to oxidative stress in Escherichia coli. Our RNA sequencing analyses revealed that two antioxidant genes katE and osmC, both controlled by the general stress response activator RpoS, were upregulated by a ribosomal error-prone mutation. Mistranslation-induced tolerance to hydrogen peroxide required rpoS, katE and osmC. We further show that both translational and post-translational regulation of RpoS contribute to peroxide tolerance in the error-prone strain, and a small RNA DsrA, which controls translation of RpoS, is critical for the improved tolerance to oxidative stress through mistranslation. Our work thus challenges the prevailing view that mistranslation is always detrimental, and provides a mechanism by which mistranslation benefits bacteria under stress conditions.
Project description:In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.
Project description:PurposeThis study aimed to determine if rebamipide eyedrops can improve ocular surface damage caused by the use of glaucoma eyedrops.MethodsFemale Kbl:Dutch rabbits were used to evaluate glaucoma eyedrop-induced ocular surface damage; one eye of each rabbit was untreated and the other was administered glaucoma eyedrops for 30 days. To evaluate the effects of rebamipide on ocular surface damage, one eye of each rabbit was administered vehicle-treated glaucoma eyedrops and the other was administered rebamipide-treated glaucoma eyedrops for 30 days. Corneal and conjunctival epithelial damage was evaluated using fluorescein and rose bengal staining, respectively. Conjunctival inflammation was observed by light microscopy with hematoxylin-eosin staining. Dark cells (in which the corneal microvilli were damaged) were analyzed by scanning electron microscopy.ResultsThere were no significant differences in fluorescein staining between the untreated and glaucoma eyedrop-treated groups; however, rose bengal staining and the number of inflammatory cells in the conjunctiva significantly increased after glaucoma eyedrop treatment. There was a four-fold increase in the number of dark cells in the glaucoma eyedrop-treated group compared to untreated. In contrast, in the conjunctiva of the rebamipide-treated glaucoma eyedrop group, rose bengal staining scores, the number of inflammatory cells, and the number of dark cells were decreased compared to the vehicle-treated glaucoma eyedrop group.ConclusionsResults from our in vivo rabbit study demonstrated that short-term use of glaucoma eyedrops induces corneal epithelium disorders at the cellular level, but that simultaneous use of rebamipide has the potential to protect and repair the ocular surface.
Project description:Cyclophilin-A is the cytosolic isoform of a family of peptidylproline cis-trans-isomerases that bind cyclosporin A. This study investigates the role of cyclophilin-A in necrotic cell death, induced by 'chemical ischaemia' and by t-butylhydroperoxide. An 18-mer antisense phosphorothioate oligodeoxynucleotide was used to target a translated region of cyclophilin-A mRNA in rat neonatal cardiomyocytes. After a 24 h exposure to the oligonucleotide, the amount of cyclophilin-A in the cells was decreased by at least 93% as judged by immunological and enzymic criteria. For the enzyme assays, peptidyl proline cis-trans-isomerase activity was measured fluorimetrically in small (10 microl) volumes of cell extract. Immunoblots were developed with a polyclonal anti-cyclophilin-A antibody after sample isoelectric focusing and SDS/PAGE. Cyclophilin-A suppression had no effect on cyanide-plus-2-deoxyglucose-induced cell death. However, cyclophilin-A-suppressed cells were markedly more sensitive to t-butylhydroperoxide. Cyclosporin A conferred some resistance to the peroxide in both types of cell, but protection was greater in cyclophilin-A-suppressed cells, where cyclosporin A increased the survival time 2-fold. It is concluded that two cyclophilin isoforms are involved, in quite different ways, in peroxide-induced cell death. Cyclophilin-A has a protective role. Another isoform, possibly mitochondrial cyclophilin-D, has a deleterious role, such that blockade by cyclosporin A leads to protection.