Unknown

Dataset Information

0

Fluorescent fusions of the N protein of phage Mu label DNA damage in living cells.


ABSTRACT: The N protein of phage Mu was indicated from studies in Escherichia coli to hold linear Mu chromosomes in a circular conformation by non-covalent association, and thus suggested potentially to bind DNA double-stranded ends. Because of its role in association with linear Mu DNA, we tested whether fluorescent-protein fusions to N might provide a useful tool for labeling DNA damage including double-strand break (DSB) ends in single cells. We compared N-GFP with a biochemically well documented DSB-end binding protein, the Gam protein of phage Mu, also fused to GFP. We find that N-GFP produced in live E. coli forms foci in response to DNA damage induced by radiomimetic drug phleomycin, indicating that it labels damaged DNA. N-GFP also labels specific DSBs created enzymatically by I-SceI double-strand endonuclease, and by X-rays, with the numbers of foci corresponding with the numbers of DSBs generated, indicating DSB labeling. However, whereas N-GFP forms about half as many foci as GamGFP with phleomycin, its labeling of I-SceI- and X-ray-induced DSBs is far less efficient than that of GamGFP. The data imply that N-GFP binds and labels DNA damage including DSBs, but may additionally label phleomycin-induced non-DSB damage, with which DSB-specific GamGFP does not interact. The data indicate that N-GFP labels DNA damage, and may be useful for general, not DSB-specific, DNA-damage detection.

SUBMITTER: Kotlajich MV 

PROVIDER: S-EPMC6287932 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications


The N protein of phage Mu was indicated from studies in Escherichia coli to hold linear Mu chromosomes in a circular conformation by non-covalent association, and thus suggested potentially to bind DNA double-stranded ends. Because of its role in association with linear Mu DNA, we tested whether fluorescent-protein fusions to N might provide a useful tool for labeling DNA damage including double-strand break (DSB) ends in single cells. We compared N-GFP with a biochemically well documented DSB-e  ...[more]

Similar Datasets

| S-EPMC5592782 | biostudies-literature
| S-EPMC2908525 | biostudies-literature
| S-EPMC10732053 | biostudies-literature
| S-EPMC4055743 | biostudies-literature
| S-EPMC6045628 | biostudies-literature
| S-EPMC7498322 | biostudies-literature
| S-EPMC3092744 | biostudies-literature
| S-EPMC6405996 | biostudies-literature
| S-EPMC5626733 | biostudies-literature
| S-EPMC7708043 | biostudies-literature