Ontology highlight
ABSTRACT:
SUBMITTER: Lin HY
PROVIDER: S-EPMC6289141 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
Lin Hui-Yi HY Huang Po-Yu PY Chen Dung-Tsa DT Tung Heng-Yuan HY Sellers Thomas A TA Pow-Sang Julio M JM Eeles Rosalind R Easton Doug D Kote-Jarai Zsofia Z Amin Al Olama Ali A Benlloch Sara S Muir Kenneth K Giles Graham G GG Wiklund Fredrik F Gronberg Henrik H Haiman Christopher A CA Schleutker Johanna J Nordestgaard Børge G BG Travis Ruth C RC Hamdy Freddie F Neal David E DE Pashayan Nora N Khaw Kay-Tee KT Stanford Janet L JL Blot William J WJ Thibodeau Stephen N SN Maier Christiane C Kibel Adam S AS Cybulski Cezary C Cannon-Albright Lisa L Brenner Hermann H Kaneva Radka R Batra Jyotsna J Teixeira Manuel R MR Pandha Hardev H Lu Yong-Jie YJ Park Jong Y JY
Bioinformatics (Oxford, England) 20181201 24
<h4>Motivation</h4>The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient m ...[more]