Unknown

Dataset Information

0

Expert-level sleep scoring with deep neural networks.


ABSTRACT: Objectives:Scoring laboratory polysomnography (PSG) data remains a manual task of visually annotating 3 primary categories: sleep stages, sleep disordered breathing, and limb movements. Attempts to automate this process have been hampered by the complexity of PSG signals and physiological heterogeneity between patients. Deep neural networks, which have recently achieved expert-level performance for other complex medical tasks, are ideally suited to PSG scoring, given sufficient training data. Methods:We used a combination of deep recurrent and convolutional neural networks (RCNN) for supervised learning of clinical labels designating sleep stages, sleep apnea events, and limb movements. The data for testing and training were derived from 10 000 clinical PSGs and 5804 research PSGs. Results:When trained on the clinical dataset, the RCNN reproduces PSG diagnostic scoring for sleep staging, sleep apnea, and limb movements with accuracies of 87.6%, 88.2% and 84.7% on held-out test data, a level of performance comparable to human experts. The RCNN model performs equally well when tested on the independent research PSG database. Only small reductions in accuracy were noted when training on limited channels to mimic at-home monitoring devices: frontal leads only for sleep staging, and thoracic belt signals only for the apnea-hypopnea index. Conclusions:By creating accurate deep learning models for sleep scoring, our work opens the path toward broader and more timely access to sleep diagnostics. Accurate scoring automation can improve the utility and efficiency of in-lab and at-home approaches to sleep diagnostics, potentially extending the reach of sleep expertise beyond specialty clinics.

SUBMITTER: Biswal S 

PROVIDER: S-EPMC6289549 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Expert-level sleep scoring with deep neural networks.

Biswal Siddharth S   Sun Haoqi H   Goparaju Balaji B   Westover M Brandon MB   Sun Jimeng J   Bianchi Matt T MT  

Journal of the American Medical Informatics Association : JAMIA 20181201 12


<h4>Objectives</h4>Scoring laboratory polysomnography (PSG) data remains a manual task of visually annotating 3 primary categories: sleep stages, sleep disordered breathing, and limb movements. Attempts to automate this process have been hampered by the complexity of PSG signals and physiological heterogeneity between patients. Deep neural networks, which have recently achieved expert-level performance for other complex medical tasks, are ideally suited to PSG scoring, given sufficient training  ...[more]

Similar Datasets

| S-EPMC6232272 | biostudies-literature
| S-EPMC4426257 | biostudies-literature
| S-EPMC6439580 | biostudies-literature
| S-EPMC7793092 | biostudies-literature
| S-EPMC8126697 | biostudies-literature
| S-EPMC7686563 | biostudies-literature
| S-EPMC7289784 | biostudies-literature
| S-EPMC7973384 | biostudies-literature
| S-EPMC8380434 | biostudies-literature
| S-EPMC6415669 | biostudies-literature