Unknown

Dataset Information

0

Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p.


ABSTRACT: BACKGROUND:Remote ischemic postconditioning (RIPostC) is an effective strategy for preventing key organs from becoming impaired due to an ischemia/reperfusion injury. In the current study, we investigated how remote exosome transfer of microRNAs (miRs) may contribute to the treatment effect of RIPostC on the central nerve system (CNS). METHODS:Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia/reoxygenation (H/R) and their miR expression profiles were investigated using the microarray method. The pathways associated with dysregulated miRs were analyzed by gene ontology (GO) annotation of the target genes and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The role played by the most significantly down-regulated miR (miR-21-3p) in the protective effect of HUVEC-derived exosomes on H/R-treated neural cells was further investigated. The pathway mediating the effect of miR-21-3p was then explored by focusing on activity of autophagy-related 12 (ATG12) protein. RESULTS:The miR expression profile of HUVECs significantly changed after H/R administration, with 104 miRs becoming upregulated and 249 miRs becoming downregulated. Based on the GO and KEGG analyses, the target genes of 8 selected miRs were involved in multiple biological pathways, including the hippo signaling pathway and longevity regulating pathway. Further studies showed that inhibition of miR-21-3p by HUVEC-derived exosomes or a specific inhibitor could the block apoptotic process in H/R-treated neural cells. Molecular level studies showed that the effect of miR-21-3p inhibition depended on the restored function of ATG12, which resulted in the activation of autophagy and suppression of apoptosis. CONCLUSION:Taken together, these results suggest that H/R caused significant changes of miR expression in exosomes derived from H/R-treated HUVECs, and the exosomes protect neurons against H/R-induced injuries by suppressing miR-21-3p.

SUBMITTER: Jiang Y 

PROVIDER: S-EPMC6291702 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p.

Jiang Yuan Y   Xie Huan H   Tu Wei W   Fang Hua H   Ji Chenxing C   Yan Tengfeng T   Huang Hongming H   Yu Cong C   Hu Qing Q   Gao Ziyun Z   Lv Shigang S  

American journal of translational research 20181115 11


<h4>Background</h4>Remote ischemic postconditioning (RIPostC) is an effective strategy for preventing key organs from becoming impaired due to an ischemia/reperfusion injury. In the current study, we investigated how remote exosome transfer of microRNAs (miRs) may contribute to the treatment effect of RIPostC on the central nerve system (CNS).<h4>Methods</h4>Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia/reoxygenation (H/R) and their miR expression profiles were invest  ...[more]

Similar Datasets

| S-EPMC7278138 | biostudies-literature
| S-EPMC7379865 | biostudies-literature
| S-EPMC7817735 | biostudies-literature
| S-EPMC8725357 | biostudies-literature
| S-EPMC4837866 | biostudies-literature
| S-EPMC8683199 | biostudies-literature
| S-EPMC7781619 | biostudies-literature
| S-EPMC10478461 | biostudies-literature
| S-EPMC10866419 | biostudies-literature
2023-01-30 | ST002461 | MetabolomicsWorkbench