Ontology highlight
ABSTRACT:
SUBMITTER: Geng S
PROVIDER: S-EPMC6292514 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
Geng Sinong S Kuang Zhaobin Z Liu Jie J Wright Stephen S Page David D
Uncertainty in artificial intelligence : proceedings of the ... conference. Conference on Uncertainty in Artificial Intelligence 20180801
We study the <i>L</i> <sub>1</sub>-regularized maximum likelihood estimator/estimation (MLE) problemfor discrete Markov random fields (MRFs), where efficient and scalable learning requires both sparse regularization and approximate inference. To address these challenges, we consider a stochastic learning framework called stochastic proximal gradient (SPG; Honorio 2012a, Atchade etal. 2014, Miasojedow and Rejchel 2016). SPG is an <i>inexact</i> proximal gradient algorithm [Schmidt et al., 2011], ...[more]