Unknown

Dataset Information

0

Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations.


ABSTRACT: Reactive locomotor adaptations are crucial for safe mobility, but remain relatively unexplored. Here we assess reactive gait adaptations, and their retention, savings and interlimb transfer. Using new methods to normalise walking speed and perturbation magnitude, we expose eighteen healthy adults to ten unexpected treadmill belt accelerations during walking (the first and last perturbing the right leg, the others perturbing the left leg) on two days, one month apart. Analysis of the margins of stability using kinematic data reveals that humans reactively adapt gait, improving stability and taking fewer recovery steps, and fully retain these adaptations over time. On re-exposure, retention and savings lead to further improvements in stability. Currently, the role of interlimb transfer is unclear. Our findings show that humans utilise retention and savings in reactive gait adaptations to benefit stability, but that interlimb transfer may not be exclusively responsible for improvements following perturbations to the untrained limb.

SUBMITTER: McCrum C 

PROVIDER: S-EPMC6294781 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations.

McCrum Christopher C   Karamanidis Kiros K   Willems Paul P   Zijlstra Wiebren W   Meijer Kenneth K  

Communications biology 20181214


Reactive locomotor adaptations are crucial for safe mobility, but remain relatively unexplored. Here we assess reactive gait adaptations, and their retention, savings and interlimb transfer. Using new methods to normalise walking speed and perturbation magnitude, we expose eighteen healthy adults to ten unexpected treadmill belt accelerations during walking (the first and last perturbing the right leg, the others perturbing the left leg) on two days, one month apart. Analysis of the margins of s  ...[more]

Similar Datasets

| S-EPMC6056632 | biostudies-literature
| S-EPMC6474794 | biostudies-literature
| S-EPMC4575700 | biostudies-literature
| S-EPMC4605446 | biostudies-other
| S-EPMC5107364 | biostudies-literature
| S-EPMC5476704 | biostudies-literature