In vivo cancer vaccination: Which dendritic cells to target and how?
Ontology highlight
ABSTRACT: The field of cancer immunotherapy has been revolutionized with the use of immune checkpoint blockade antibodies such as anti-programmed cell death 1 protein (PD-1) and chimeric antigen receptor T cells. Significant clinical benefits are observed in different cancer types with these treatments. While considerable efforts are made in augmenting tumor-specific T cell responses with these therapies, other immunotherapies that actively stimulate endogenous anti-tumor T cells and generating long-term memory have received less attention. Given the high cost of cancer immunotherapies especially with chimeric antigen receptor T cells, not many patients will have access to such treatments. The next-generation of cancer immunotherapy could entail in vivo cancer vaccination to activate both the innate and adaptive anti-tumor responses. This could potentially be achieved via in vivo targeting of dendritic cells which are an indispensable link between the innate and adaptive immunities. Dendritic cells highly expressed toll-like receptors for recognizing and eliminating pathogens. Synthetic toll-like receptors agonists could be synthesized at a low cost and have shown promise in preclinical and clinical trials. As different subsets of human dendritic cells exist in the immune system, activation with different toll-like receptor agonists could exert profound effects on the quality and magnitude of anti-tumor T cell responses. Here, we reviewed the different subsets of human dendritic cells. Using published preclinical and clinical cancers studies available on PubMed, we discussed the use of clinically approved and emerging toll-like receptor agonists to activate dendritic cells in vivo for cancer immunotherapy. Finally, we searched www.clinicaltrials.gov and summarized the active cancer trials evaluating toll-like receptor agonists as an adjuvant.
SUBMITTER: Chiang CL
PROVIDER: S-EPMC6295330 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA