Unknown

Dataset Information

0

Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks.


ABSTRACT: Background and Aim: Humic substances (HSs) influence the chemical and physical properties of the soil, and are also known to affect plant physiology and nutrient uptake. This study aimed to elucidate plant metabolic pathways and physiological processes influenced by HS activity. Methods: Arabidopsis roots were treated with HS for 8 h. Quantitative mass spectrometry-based proteomics analysis of root proteins was performed using the iTRAQ (Isobaric Tag for Relative and Absolute Quantification) technique. Out of 902 protein families identified and quantified for HS treated vs. untreated roots, 92 proteins had different relative content. Bioinformatic tools such as STRING, KEGG, IIS and Cytoscape were used to interpret the biological function, pathway analysis and visualization of network amongst the identified proteins. Results: From this analysis it was possible to evaluate that all of the identified proteins were functionally classified into several categories, mainly redox homeostasis, response to inorganic substances, energy metabolism, protein synthesis, cell trafficking, and division. Conclusion: In the present study an overview of the metabolic pathways most modified by HS biological activity is provided. Activation of enzymes of the glycolytic pathway and up regulation of ribosomal protein indicated a stimulation in energy metabolism and protein synthesis. Regulation of the enzymes involved in redox homeostasis suggest a pivotal role of reactive oxygen species in the signaling and modulation of HS-induced responses.

SUBMITTER: Roomi S 

PROVIDER: S-EPMC6299182 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks.

Roomi Sohaib S   Masi Antonio A   Conselvan Giovanni Battista GB   Trevisan Sara S   Quaggiotti Silvia S   Pivato Micaela M   Arrigoni Giorgio G   Yasmin Tayyaba T   Carletti Paolo P  

Frontiers in plant science 20181212


<b>Background and Aim:</b> Humic substances (HSs) influence the chemical and physical properties of the soil, and are also known to affect plant physiology and nutrient uptake. This study aimed to elucidate plant metabolic pathways and physiological processes influenced by HS activity. <b>Methods:</b> Arabidopsis roots were treated with HS for 8 h. Quantitative mass spectrometry-based proteomics analysis of root proteins was performed using the iTRAQ (Isobaric Tag for Relative and Absolute Quant  ...[more]

Similar Datasets

| PRJEB20221 | ENA
2018-07-30 | GSE103184 | GEO
2019-01-11 | PXD009989 | Pride
| S-EPMC4421865 | biostudies-literature
| S-EPMC7647083 | biostudies-literature
2022-12-19 | PXD031138 | Pride
| S-EPMC4061048 | biostudies-literature
| S-EPMC4531828 | biostudies-other
| S-EPMC7384437 | biostudies-literature
2012-02-03 | GSE35360 | GEO