Ontology highlight
ABSTRACT: Background
We developed a brain-machine interface (BMI) system for poststroke patients with severe hemiplegia to detect event-related desynchronization (ERD) on scalp electroencephalogram (EEG) and to operate a motor-driven hand orthosis combined with neuromuscular electrical stimulation. ERD arises when the excitability of the ipsi-lesional sensorimotor cortex increases.Objective
The aim of this study was to evaluate our hypothesis that motor training using this BMI system could improve severe hemiparesis that is resistant to improvement by conventional rehabilitation. We, therefore, planned and implemented a randomized controlled clinical trial (RCT) to evaluate the effectiveness and safety of intensive rehabilitation using the BMI system.Methods
We conducted a single blind, multicenter RCT and recruited chronic poststroke patients with severe hemiparesis more than 90 days after onset (N=40). Participants were randomly allocated to the BMI group (n=20) or the control group (n=20). Patients in the BMI group repeated 10-second motor attempts to operate EEG-BMI 40 min every day followed by 40 min of conventional occupational therapy. The interventions were repeated 10 times in 2 weeks. Control participants performed a simple motor imagery without servo-action of the orthosis, and electrostimulation was given for 10 seconds for 40 min, similar to the BMI intervention. Overall, 40 min of conventional occupational therapy was also given every day after the control intervention, which was also repeated 10 times in 2 weeks. Motor functions and electrophysiological phenotypes of the paretic hands were characterized before (baseline), immediately after (post), and 4 weeks after (follow-up) the intervention. Improvement in the upper extremity score of the Fugl-Meyer assessment between baseline and follow-up was the main outcome of this study.Results
Recruitment started in March 2017 and ended in July 2018. This trial is currently in the data correcting phase. This RCT is expected to be completed by October 31, 2018.Conclusions
No widely accepted intervention has been established to improve finger function of chronic poststroke patients with severe hemiparesis. The results of this study will provide clinical data for regulatory approval and novel, important understanding of the role of sensory-motor feedback based on BMI to induce neural plasticity and motor recovery.Trial registration
UMIN Clinical Trials Registry UMIN000026372; https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi? recptno=R000030299 (Archived by WebCite at http://www.webcitation.org/743zBJj3D).International registered report identifier (irrid)
DERR1-10.2196/12339.
SUBMITTER: Mizuno K
PROVIDER: S-EPMC6302229 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
JMIR research protocols 20181206 12
<h4>Background</h4>We developed a brain-machine interface (BMI) system for poststroke patients with severe hemiplegia to detect event-related desynchronization (ERD) on scalp electroencephalogram (EEG) and to operate a motor-driven hand orthosis combined with neuromuscular electrical stimulation. ERD arises when the excitability of the ipsi-lesional sensorimotor cortex increases.<h4>Objective</h4>The aim of this study was to evaluate our hypothesis that motor training using this BMI system could ...[more]