ABSTRACT: The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt "janus-like" domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.