Female assortative mate choice functionally validates synthesized male odours of evolving stickleback river-lake ecotypes.
Ontology highlight
ABSTRACT: During mate choice decisions, females of many vertebrates use male olfactory cues to achieve immunogenetic optimality of their offspring. Three-spined sticklebacks ( Gasterosteus aculeatus) populating habitats that differ in their parasite communities evolve locally adapted combinations of genetic variants encoded at the major histocompatibility complex (MHC). Such adaptation confers optimal resistance to the local parasite fauna. Immunogenetic signatures co-evolved with local parasites favour population-specific assortative mate choice behaviour. Previous studies have shown that female sticklebacks evaluate male MHC-associated olfactory cues during the process of mate choice, but how habitat-specific information is exchanged between males and females has remained elusive. Here, we directly demonstrate the molecular nature of the olfactory cue providing habitat-specific information. Under controlled laboratory conditions, females that are ready to mate prefer mixtures of synthetic MHC peptide ligands mimicking the optimal allele number of their original population. These results imply that female sticklebacks can determine the number of MHC alleles of their prospective mates, compare it to their own immunogenetic status, and, if optimal with respect to the immunogenetic complementarity, accept the male as mate. Our results suggest a potentially common mechanism of ecological speciation in vertebrates that is based on the olfactory assessment of habitat-specific immunogenetic diversity.
SUBMITTER: Gahr CL
PROVIDER: S-EPMC6303515 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA