Unknown

Dataset Information

0

Fenestrations control resting-state block of a voltage-gated sodium channel.


ABSTRACT: Potency of drug action is usually determined by binding to a specific receptor site on target proteins. In contrast to this conventional paradigm, we show here that potency of local anesthetics (LAs) and antiarrhythmic drugs (AADs) that block sodium channels is controlled by fenestrations that allow drug access to the receptor site directly from the membrane phase. Voltage-gated sodium channels initiate action potentials in nerve and cardiac muscle, where their hyperactivity causes pain and cardiac arrhythmia, respectively. LAs and AADs selectively block sodium channels in rapidly firing nerve and muscle cells to relieve these conditions. The structure of the ancestral bacterial sodium channel NaVAb, which is also blocked by LAs and AADs, revealed fenestrations connecting the lipid phase of the membrane to the central cavity of the pore. We cocrystallized lidocaine and flecainide with NavAb, which revealed strong drug-dependent electron density in the central cavity of the pore. Mutation of the contact residue T206 greatly reduced drug potency, confirming this site as the receptor for LAs and AADs. Strikingly, mutations of the fenestration cap residue F203 changed fenestration size and had graded effects on resting-state block by flecainide, lidocaine, and benzocaine, the potencies of which were altered from 51- to 2.6-fold in order of their molecular size. These results show that conserved fenestrations in the pores of sodium channels are crucial pharmacologically and determine the level of resting-state block by widely used drugs. Fine-tuning drug access through fenestrations provides an unexpected avenue for structure-based design of ion-channel-blocking drugs.

SUBMITTER: Gamal El-Din TM 

PROVIDER: S-EPMC6304959 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fenestrations control resting-state block of a voltage-gated sodium channel.

Gamal El-Din Tamer M TM   Lenaeus Michael J MJ   Zheng Ning N   Catterall William A WA  

Proceedings of the National Academy of Sciences of the United States of America 20181205 51


Potency of drug action is usually determined by binding to a specific receptor site on target proteins. In contrast to this conventional paradigm, we show here that potency of local anesthetics (LAs) and antiarrhythmic drugs (AADs) that block sodium channels is controlled by fenestrations that allow drug access to the receptor site directly from the membrane phase. Voltage-gated sodium channels initiate action potentials in nerve and cardiac muscle, where their hyperactivity causes pain and card  ...[more]

Similar Datasets

| S-EPMC4203756 | biostudies-literature
| S-EPMC6688928 | biostudies-literature
2022-06-09 | GSE186729 | GEO
2021-07-13 | GSE179818 | GEO
| S-EPMC3972499 | biostudies-literature
| S-EPMC6338345 | biostudies-literature
| S-EPMC3266868 | biostudies-literature
2020-05-09 | GSE150134 | GEO
2020-02-08 | GSE136927 | GEO
| S-EPMC6775510 | biostudies-literature