Unknown

Dataset Information

0

Accelerating QM/MM Free Energy Computations via Intramolecular Force Matching.


ABSTRACT: The calculation of free energy differences between levels of theory has numerous potential pitfalls. Chief among them is the lack of overlap, i.e., ensembles generated at one level of theory (e.g., "low") not being good approximations of ensembles at the other (e.g., "high"). Numerous strategies have been devised to mitigate this issue. However, the most straightforward approach is to ensure that the "low" level ensemble more closely resembles that of the "high". Ideally, this is done without increasing computational cost. Herein, we demonstrate that by reparametrizing classical intramolecular potentials to reproduce high level forces (i.e., force matching) configurational overlap between a "low" (i.e., classical) and "high" (i.e., quantum) level can be significantly improved. This procedure is validated on two test cases and results in vastly improved convergence of free energy simulations.

SUBMITTER: Hudson PS 

PROVIDER: S-EPMC6314469 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accelerating QM/MM Free Energy Computations via Intramolecular Force Matching.

Hudson Phillip S PS   Boresch Stefan S   Rogers David M DM   Woodcock H Lee HL  

Journal of chemical theory and computation 20181115 12


The calculation of free energy differences between levels of theory has numerous potential pitfalls. Chief among them is the lack of overlap, i.e., ensembles generated at one level of theory (e.g., "low") not being good approximations of ensembles at the other (e.g., "high"). Numerous strategies have been devised to mitigate this issue. However, the most straightforward approach is to ensure that the "low" level ensemble more closely resembles that of the "high". Ideally, this is done without in  ...[more]

Similar Datasets

| S-EPMC6745021 | biostudies-literature
| S-EPMC6867086 | biostudies-literature
| S-EPMC4547088 | biostudies-literature
| S-EPMC3128672 | biostudies-literature
| S-EPMC3006460 | biostudies-literature
| S-EPMC4917473 | biostudies-literature
| S-EPMC6085747 | biostudies-literature