Real-time, spectral analysis of the arterial pressure waveform using a wirelessly-connected, tablet computer: a pilot study.
Ontology highlight
ABSTRACT: Spectral analysis of the arterial pressure waveform, using specialized hardware, has been used for the retrospective calculation of the 'Spectral Peak Ratio' (SPeR) of the respiratory and cardiac arterial spectral peaks. The metric can quantify the cardiovascular response to volume loading by analysing the effect of changing tidal volume (indexed to body weight) (VTI) on pulse pressure variability. In this pilot study, the feasibility of real-time SPeR calculation, using a mobile computer which was wirelessly connected to the patient monitor, was evaluated by examining the determinants of SPeR in 60 cardiac-surgical patients. In 30 patients undergoing aortic valve replacement (AVR), graded cyclical changes in ventricular loading were induced by increasing VTI over 2 min, while performing spectral analysis at 1 Hz, before and after AVR. A strong, linear correlation between SPeR and VTI was found and the slope of the regression line (β) changed significantly after AVR. The change in β correlated with the width of the preoperative vena contracta. In another 30 patients, SPeR at constant VTI was calculated at 1 Hz during passive leg raising. β fell significantly on leg raising. The mean arterial pressure change during the manoeuvre was linearly related to the change in β. Real-time spectral analysis of the arterial waveform was easily accomplished. The regression of SPeR on VTI was linear. β appeared to represent the slope of the cardiac response curve at the venous return curve equilibrium point. Measurements were possible at a significantly lower VTI than the equivalent time domain metrics.
SUBMITTER: Pybus DA
PROVIDER: S-EPMC6314984 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA