Unknown

Dataset Information

0

Predicting Viscosity and Surface Tension at High Temperature of Porcelain Stoneware Bodies: A Methodological Approach.


ABSTRACT: The shear viscosity and the glass-vapor surface tension at high temperature are crucial to understand the viscous flow sintering kinetics of porcelain stoneware. Moreover, the pyroplastic deformation depends on the viscosity of the whole body, which is made up of a suspension of crystals dispersed in the melt. The existing fundamental theoretical background, along with semi-empirical constitutive laws for viscous flow sintering and glass densification, can be exploited through different approaches to estimate the physical properties at high temperatures starting from amount and chemical composition of the melt. In this work, a comprehensive attempt to predict the properties of the liquid phase is proposed by means of a detailed overview of existing models for viscosity and surface tension of glasses and melts at high temperature. The chemical composition of the vitreous phase and its physical properties at high temperature are estimated through an experimental approach based on the qualitative and quantitative chemical and phase analyses (by Rietveld refinement of X-ray powder diffraction patterns) of different porcelain-like materials. Repercussions on the firing behavior of ceramic bodies, are discussed. Comparative examples are provided for porcelain stoneware tiles, vitreous china and porcelain bodies, disclosing differences in composition and properties but a common sintering mechanism.

SUBMITTER: Conte S 

PROVIDER: S-EPMC6317026 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predicting Viscosity and Surface Tension at High Temperature of Porcelain Stoneware Bodies: A Methodological Approach.

Conte Sonia S   Zanelli Chiara C   Ardit Matteo M   Cruciani Giuseppe G   Dondi Michele M  

Materials (Basel, Switzerland) 20181206 12


The shear viscosity and the glass-vapor surface tension at high temperature are crucial to understand the viscous flow sintering kinetics of porcelain stoneware. Moreover, the pyroplastic deformation depends on the viscosity of the whole body, which is made up of a suspension of crystals dispersed in the melt. The existing fundamental theoretical background, along with semi-empirical constitutive laws for viscous flow sintering and glass densification, can be exploited through different approach  ...[more]

Similar Datasets

| S-EPMC6346034 | biostudies-literature
| S-EPMC9563586 | biostudies-literature
| S-EPMC6389878 | biostudies-literature
| S-EPMC4249917 | biostudies-literature
| S-EPMC10061933 | biostudies-literature
| S-EPMC3563668 | biostudies-literature
| S-EPMC8919510 | biostudies-literature
| S-EPMC3081020 | biostudies-literature
| S-EPMC7495436 | biostudies-literature
| S-EPMC3141939 | biostudies-literature