Unknown

Dataset Information

0

Depth dependence of coherent hemodynamics in the human head.


ABSTRACT: We report a near-infrared spectroscopy (NIRS) study of coherent hemodynamic oscillations measured on the human forehead at multiple source-detector distances (1 to 4 cm). The physiological source of the coherent hemodynamics is arterial blood pressure oscillations at a frequency of 0.1 Hz, induced by cyclic inflation (to a pressure of 200 mmHg) and deflation of two thigh cuffs wrapped around the subject's thighs. To interpret our results, we use a recently developed hemodynamic model and a phasor representation of the oscillations of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations in the tissue (phasors O, D, and T, respectively). The increase in the phase angle between D and O at larger source-detector separations is assigned to greater flow versus volume contributions and to a stronger blood flow autoregulation in deeper tissue (brain cortex) with respect to superficial tissue (scalp and skull). The relatively constant phase lag of T versus arterial blood pressure oscillations at all source-detector distances was assigned to competing effects from stronger autoregulation and smaller arterial-to-venous contributions in deeper tissue with respect to superficial tissue. We demonstrate the application of a hemodynamic model to interpret coherent hemodynamics measured with NIRS and to assess the different nature of shallow (extracerebral) versus deep (cerebral) tissue hemodynamics.

SUBMITTER: Khaksari K 

PROVIDER: S-EPMC6318717 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Depth dependence of coherent hemodynamics in the human head.

Khaksari Kosar K   Blaney Giles G   Sassaroli Angelo A   Krishnamurthy Nishanth N   Pham Thao T   Fantini Sergio S  

Journal of biomedical optics 20181101 12


We report a near-infrared spectroscopy (NIRS) study of coherent hemodynamic oscillations measured on the human forehead at multiple source-detector distances (1 to 4 cm). The physiological source of the coherent hemodynamics is arterial blood pressure oscillations at a frequency of 0.1 Hz, induced by cyclic inflation (to a pressure of 200 mmHg) and deflation of two thigh cuffs wrapped around the subject's thighs. To interpret our results, we use a recently developed hemodynamic model and a phaso  ...[more]

Similar Datasets

| S-EPMC10730023 | biostudies-literature
| S-EPMC9251853 | biostudies-literature
| S-EPMC10070519 | biostudies-literature
| S-EPMC6019140 | biostudies-literature
| S-EPMC4282631 | biostudies-literature
| S-EPMC9723684 | biostudies-literature
| S-EPMC4524535 | biostudies-literature
| S-EPMC7606540 | biostudies-literature
| S-EPMC6870359 | biostudies-literature
| S-EPMC7409614 | biostudies-literature