Project description:Interindividual variability in response to drugs used in anesthesia has long been considered the rule, not the exception. It is important to mention that in anesthesiology, the variability in response to drugs is multifactorial, i.e., genetic and environmental factors interact with each other and thus affect the metabolism, efficacy, and side effects of drugs. Propofol (2,6-diisopropylphenol) is the most common intravenous anesthetic used in modern medicine. Individual differences in genetic factors [single nucleotide polymorphisms (SNPs)] in the genes encoding metabolic enzymes, molecular transporters, and molecular binding sites of propofol can be responsible for susceptibility to propofol effects. The objective of this review (through the analysis of published research) was to systematize the influence of gene polymorphisms on the pharmacokinetics and pharmacodynamics of propofol, to explain whether and to what extent the gene profile has an impact on variations observed in the clinical response to propofol, and to estimate the benefit of genotyping in anesthesiology. Despite the fact that there has been a considerable advance in this type of research in recent years, which has been largely limited to one or a group of genes, interindividual differences in propofol pharmacokinetics and pharmacodynamics may be best explained by the contribution of multiple pathways and need to be further investigated.
Project description:A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.
Project description:The derivation of molecular signatures indicative of disease status and predictive of subsequent behavior could facilitate the optimal choice of treatment for prostate cancer patients. In this study, we conducted a computational analysis of gene expression profile data obtained from 79 cases, 39 of which were classified as having disease recurrence, to investigate whether advanced computational algorithms can derive more accurate prognostic signatures for prostate cancer. At the 90% sensitivity level, a newly derived prognostic genetic signature achieved 85% specificity. This is the first reported genetic signature to outperform a clinically used postoperative nomogram. Furthermore, a hybrid prognostic signature derived by combination of the nomogram and gene expression data significantly outperformed both genetic and clinical signatures, and achieved a specificity of 95%. Our study demonstrates the feasibility of utilizing gene expression information for highly accurate prostate cancer prognosis beyond the current clinical systems, and shows that more advanced computational modeling of tissue-derived microarray data is warranted before clinical application of molecular signatures is considered. mRNA profiling was performed using 79 cases of prostate cancer of known disease recurrence status
Project description:Survival has increased dramatically for patients with chronic phase chronic myeloid leukemia (CP-CML) using BCR-ABL targeted tyrosine kinase inhibitors, such that life expectancy is expected to approximate that of patients without CP-CML. Randomized controlled trials (RCTs) and observational studies provide valuable insights into the management of chronic diseases such as CP-CML. RCTs are undoubtedly the backbone of clinical research, and the 'gold standard' for evaluating the efficacy and safety of new therapies. However, many questions surrounding the optimal management of patients with CML remain unanswered, and it is widely accepted that these questions will be best answered by evaluating the use of available therapies in clinical practice. Observational studies can extend the knowledge base beyond the clinical trial setting and thus capture a more accurate picture of everyday clinical practice, particularly patients' experiences of long-term CML treatment. There is therefore growing interest in and appreciation of the value of observational research. This review article will examine the relative merits of RCTs and observational studies in the setting of CML, highlighting those factors - such as the advancing age of the CML patient population and growing importance of patient-reported outcomes - that mean that observational studies should play an important role in shaping clinical practice. This article also provides an overview of what observational studies have told us thus far about the optimal management of patients with CML, outlines some of the key remaining unanswered clinical questions in CML, and summarizes ongoing observational studies designed to provide answers to these key questions.
Project description:The derivation of molecular signatures indicative of disease status and predictive of subsequent behavior could facilitate the optimal choice of treatment for prostate cancer patients. In this study, we conducted a computational analysis of gene expression profile data obtained from 79 cases, 39 of which were classified as having disease recurrence, to investigate whether advanced computational algorithms can derive more accurate prognostic signatures for prostate cancer. At the 90% sensitivity level, a newly derived prognostic genetic signature achieved 85% specificity. This is the first reported genetic signature to outperform a clinically used postoperative nomogram. Furthermore, a hybrid prognostic signature derived by combination of the nomogram and gene expression data significantly outperformed both genetic and clinical signatures, and achieved a specificity of 95%. Our study demonstrates the feasibility of utilizing gene expression information for highly accurate prostate cancer prognosis beyond the current clinical systems, and shows that more advanced computational modeling of tissue-derived microarray data is warranted before clinical application of molecular signatures is considered.
Project description:Prostate cancer (PCa) is the second most common tumour diagnosed in men. Tumoral heterogeneity in PCa creates a significant challenge to develop robust prognostic markers and novel targets for therapy. An analysis of gene regulatory networks (GRNs) in PCa may provide insight into progressive PCa. Herein, we exploited a graph-based enrichment score to integrate data from GRNs identified in preclinical prostate orthografts and differentially expressed genes in clinical resected PCa. We identified active regulons (transcriptional regulators and their targeted genes) associated with PCa recurrence following radical prostatectomy. The expression of known transcription factors and co-factors was analysed in a panel of prostate orthografts (n = 18). We searched for genes (as part of individual GRNs) predicted to be regulated by the highest number of transcriptional factors. Using differentially expressed gene analysis (on a per sample basis) coupled with gene graph enrichment analysis, we identified candidate genes and associated GRNs in PCa within the UTA cohort, with the most enriched regulon being JMJD6, which was further validated in two additional cohorts, namely EMC and ICGC cohorts. Cox regression analysis was performed to evaluate the association of the JMJD6 regulon activity with disease-free survival time in the three clinical cohorts as well as compared to three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). 1308 regulons were correlated to transcriptomic data from the three clinical prostatectomy cohorts. The JMJD6 regulon was identified as the top enriched regulon in the UTA cohort and again validated in the EMC cohort as the top-ranking regulon. In both UTA and EMC cohorts, the JMJD6 regulon was significantly associated with cancer recurrence. Active JMJD6 regulon also correlated with disease recurrence in the ICGC cohort. Furthermore, Kaplan-Meier analysis confirmed shorter time to recurrence in patients with active JMJD6 regulon for all three clinical cohorts (UTA, EMC and ICGC), which was not the case for three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). In multivariate analysis, the JMJD6 regulon status significantly predicted disease recurrence in the UTA and EMC, but not ICGC datasets, while none of the three published signatures significantly prognosticate for cancer recurrence. We have characterised gene regulatory networks from preclinical prostate orthografts and applied transcriptomic data from three clinical cohorts to evaluate the prognostic potential of the JMJD6 regulon.
Project description:BACKGROUND:For specific clinical indications, androgen deprivation therapy (ADT) will induce disease prostate cancer (PC) regression, relieve symptoms and prolong survival; however, ADT has a well-described range of side effects, which may have a detrimental effect on the patient's quality of life, necessitating additional interventions or changes in PC treatment. The risk-benefit analysis for initiating ADT in PC patients throughout the PC disease continuum warrants review. METHODS:A 14-member panel comprised of urologic and medical oncologists were chosen for an expert review panel, to provide guidance on a more judicious use of ADT in advanced PC patients. Panel members were chosen based upon their academic and community experience and expertise in the management of PC patients. Four academic members of the panel served as group leaders; the remaining eight panel members were from Large Urology Group Practice Association practices with proven experience in leading their advanced PC clinics. The panel members were assigned to four separate working groups, and were tasked with addressing the role of ADT in specific PC settings. RESULTS:This article describes the practical recommendations of an expert panel for the use of ADT throughout the PC disease continuum, as well as an algorithm summarizing the key recommendations. The target for this publication is all providers (urologists, medical oncologists, radiation oncologists, or advanced practice providers) who evaluate and manage advanced PC patients, regardless of their practice setting. CONCLUSION:The panel has provided recommendations for monitoring PC patients while on ADT, recognizing that PC patients will progress despite testosterone suppression and, therefore, early identification of conversion from castrate-sensitive to castration resistance is critical. Also, the requirement to both identify and mitigate side effects of ADT as well as the importance of quality of life maintenance are essential to the optimization of patient care, especially as more combinatorial therapeutic strategies with ADT continue to emerge.
Project description:In a continuing study of curcumin analogues as potential drug candidates to treat prostate cancer at both androgen-dependent and androgen-refractory stages, we designed and synthesized over 40 new analogues classified into four series: monophenyl analogues (series A), heterocycle-containing analogues (series B), analogues bearing various substituents on the phenyl rings (series C), and analogues with various linkers (series D). These new compounds were tested for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Antiandrogenic activity was also evaluated in LNCaP cells and PC-3 cells transfected with wild-type androgen receptor. Ten compounds possessed potent cytotoxicity against both LNCaP and PC-3 cells, seven only against LNCaP, and one solely against PC-3. This study established an advanced structure-activity relationship (SAR), and these correlations will guide the further design of new curcumin analogues with better anti-prostate cancer activity.
Project description:Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.
Project description:BackgroundThe derivation of molecular signatures indicative of disease status and predictive of subsequent behavior could facilitate the optimal choice of treatment for prostate cancer patients.MethodsIn this study, we conducted a computational analysis of gene expression profile data obtained from 79 cases, 39 of which were classified as having disease recurrence, to investigate whether advanced computational algorithms can derive more accurate prognostic signatures for prostate cancer.ResultsAt the 90% sensitivity level, a newly derived prognostic genetic signature achieved 85% specificity. This is the first reported genetic signature to outperform a clinically used postoperative nomogram. Furthermore, a hybrid prognostic signature derived by combination of the nomogram and gene expression data significantly outperformed both genetic and clinical signatures, and achieved a specificity of 95%.ConclusionsOur study demonstrates the feasibility of utilizing gene expression information for highly accurate prostate cancer prognosis beyond the current clinical systems, and shows that more advanced computational modeling of tissue-derived microarray data is warranted before clinical application of molecular signatures is considered.