RrGT2, A Key Gene Associated with Anthocyanin Biosynthesis in Rosa rugosa, Was Identified Via Virus-Induced Gene Silencing and Overexpression.
Ontology highlight
ABSTRACT: In this study, a gene with a full-length cDNA of 1422 bp encoding 473 amino acids, designated RrGT2, was isolated from R. rugosa 'Zizhi' and then functionally characterized. RrGT2 transcripts were detected in various tissues and were proved that their expression patterns corresponded with anthocyanins accumulation. Functional verification of RrGT2 in R. rugosa was performed via VIGS. When RrGT2 was silenced, the Rosa plants displayed a pale petal color phenotype. The detection results showed that the expression of RrGT2 was significantly downregulated, which was consistent with the decrease of all anthocyanins; while the expression of six key upstream structural genes was normal. Additionally, the in vivo function of RrGT2 was investigated via its overexpression in tobacco. In transgenic tobacco plants expressing RrGT2, anthocyanin accumulation was induced in the flowers, indicating that RrGT2 could encode a functional GT protein for anthocyanin biosynthesis and could function in other species. The application of VIGS in transgenic tobacco resulted in the treated tobacco plants presenting flowers whose phenotypes were lighter in color than those of normal plants. These results also validated and affirmed previous conclusions. Therefore, we speculated that glycosylation of RrGT2 plays a crucial role in anthocyanin biosynthesis in R. rugosa.
SUBMITTER: Sui X
PROVIDER: S-EPMC6321322 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA