Minute Virus of Canines NP1 Protein Interacts with the Cellular Factor CPSF6 To Regulate Viral Alternative RNA Processing.
Ontology highlight
ABSTRACT: The NP1 protein of minute virus of canines (MVC) governs production of the viral capsid proteins via its role in pre-mRNA processing. NP1 suppresses polyadenylation and cleavage at its internal site, termed the proximal polyadenylation (pA)p site, to allow accumulation of RNAs that extend into the capsid gene, and it enhances splicing of the upstream adjacent third intron, which is necessary to properly enter the capsid protein open reading frame. We find the (pA)p region to be complex. It contains redundant classical cis-acting signals necessary for the cleavage and polyadenylation reaction and splicing of the adjacent upstream third intron, as well as regions outside the classical motifs that are necessary for responding to NP1. NP1, but not processing mutants of NP1, bound to MVC RNA directly. The cellular RNA processing factor CPSF6 interacted with NP1 in transfected cells and participated with NP1 to modulate its effects. These experiments further characterize the role of NP1 in parvovirus gene expression.IMPORTANCE The Parvovirinae are small nonenveloped icosahedral viruses that are important pathogens in many animal species, including humans. Unlike other parvoviruses, the bocavirus genus controls expression of its capsid proteins via alternative RNA processing, by both suppressing polyadenylation at an internal site, termed the proximal polyadenylation (pA)p site, and by facilitating splicing of an upstream adjacent intron. This regulation is mediated by a small genus-specific protein, NP1. Understanding the cis-acting targets of NP1, as well as the cellular factors with which it interacts, is necessary to more clearly understand this unique mode of parvovirus gene expression.
SUBMITTER: Dong Y
PROVIDER: S-EPMC6321912 | biostudies-literature | 2019 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA