Unknown

Dataset Information

0

Isotope Labeling-Assisted Evaluation of Hydrophilic and Hydrophobic Liquid Chromatograph-Mass Spectrometry for Metabolomics Profiling.


ABSTRACT: High throughput untargeted metabolomics usually relies on complementary liquid chromatography-mass spectrometry (LC-MS) methods to expand the coverage of diverse metabolites, but the integration of those methods is not fully characterized. We systematically investigated the performance of hydrophilic interaction liquid chromatography (HILIC)-MS and nanoflow reverse-phase liquid chromatography (nRPLC)-MS under 8 LC-MS settings, varying stationary phases (HILIC and C18), mobile phases (acidic and basic pH), and MS ionization modes (positive and negative). Whereas nRPLC-MS optimization was previously reported, we found in HILIC-MS (2.1 mm × 150 mm) that the optimal performance was achieved in a 90 min gradient with 100 ?L/min flow rate by loading metabolite extracts from 2 mg of cell/tissue samples. Since peak features were highly compromised by contaminants, we used stable isotope labeled yeast to enhance formula identification for comparing different LC-MS conditions. The 8 LC-MS settings enabled the detection of a total of 1050 formulas, among which 78%, 73%, and 62% formulas were recovered by the best combination of 4, 3, and 2 LC-MS settings, respectively. Moreover, these yeast samples were harvested in the presence or absence of nitrogen starvation, enabling quantitative comparisons of altered formulas and metabolite structures, followed by validation with selected synthetic metabolites. The results revealed that nitrogen starvation downregulated amino acid components but upregulated uridine-related metabolism. In summary, this study introduces a thorough evaluation of hydrophilicity and hydrophobicity based LC-MS and provides information for selecting complementary settings to balance throughput and efficiency during metabolomics experiments.

SUBMITTER: Xie B 

PROVIDER: S-EPMC6324930 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Isotope Labeling-Assisted Evaluation of Hydrophilic and Hydrophobic Liquid Chromatograph-Mass Spectrometry for Metabolomics Profiling.

Xie Boer B   Wang Yuanyuan Y   Jones Drew R DR   Dey Kaushik Kumar KK   Wang Xusheng X   Li Yuxin Y   Cho Ji-Hoon JH   Shaw Timothy I TI   Tan Haiyan H   Peng Junmin J  

Analytical chemistry 20180625 14


High throughput untargeted metabolomics usually relies on complementary liquid chromatography-mass spectrometry (LC-MS) methods to expand the coverage of diverse metabolites, but the integration of those methods is not fully characterized. We systematically investigated the performance of hydrophilic interaction liquid chromatography (HILIC)-MS and nanoflow reverse-phase liquid chromatography (nRPLC)-MS under 8 LC-MS settings, varying stationary phases (HILIC and C18), mobile phases (acidic and  ...[more]

Similar Datasets

| S-EPMC6058730 | biostudies-literature
| S-EPMC7197904 | biostudies-literature
| S-EPMC5492990 | biostudies-literature
| S-EPMC10932214 | biostudies-literature
| S-EPMC4841728 | biostudies-literature
| S-EPMC6718375 | biostudies-literature
| S-EPMC3482478 | biostudies-literature
| S-EPMC2715431 | biostudies-literature
| S-EPMC4419193 | biostudies-literature
| S-EPMC8591080 | biostudies-literature