Unknown

Dataset Information

0

TiO2-Coated Interlayer-Expanded MoSe2/Phosphorus-Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage.


ABSTRACT: Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium-ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer-expanded MoSe2/phosphorus-doped carbon hybrid nanospheres coated by anatase TiO2 (denoted as MoSe2/P-C@TiO2) are prepared by a facile hydrolysis reaction, in which TiO2 coating polypyrrole-phosphomolybdic acid is utilized as a novel precursor followed by a selenization process. Benefiting from synergistic effects of MoSe2, phosphorus-doped carbon, and TiO2, the hybrid nanospheres manifest unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. The MoSe2/P-C@TiO2 delivers decent reversible capacities of 214 mAh g-1 at 5.0 A g-1 for 8000 cycles, 154 mAh g-1 at 10.0 A g-1 for 10000 cycles, and an exceptional rate capability up to 20.0 A g-1 with a capacity of ?175 mAh g-1 in a voltage range of 0.5-3.0 V. Coupled with a Na3V2(PO4)3@C cathode, a full cell successfully confirms a reversible capacity of 242.2 mAh g-1 at 0.5 A g-1 for 100 cycles with a coulombic efficiency over 99%.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC6325630 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

TiO<sub>2</sub>-Coated Interlayer-Expanded MoSe<sub>2</sub>/Phosphorus-Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage.

Wang Yuyu Y   Wang Yunxiao Y   Kang Wenpei W   Cao Dongwei D   Li Chenxu C   Cao Dongxu D   Kang Zixi Z   Sun Daofeng D   Wang Rongming R   Cao Yuliang Y  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20181109 1


Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium-ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer-expanded MoSe<sub>2</sub>/phosphorus-doped carbon hybrid nanospheres coated by anatase TiO<sub>2</sub> (denoted as MoSe<sub>2</sub>/P-C@TiO<sub>2</sub>) are prepared by a facile hydrolysis reacti  ...[more]

Similar Datasets

| S-EPMC10616232 | biostudies-literature
| S-EPMC10507070 | biostudies-literature
| S-EPMC9468147 | biostudies-literature
| S-EPMC9411176 | biostudies-literature
| S-EPMC5604380 | biostudies-literature
| S-EPMC5489517 | biostudies-literature
| S-EPMC10004735 | biostudies-literature
| S-EPMC10350964 | biostudies-literature
| S-EPMC11229060 | biostudies-literature
| S-EPMC5102659 | biostudies-literature