Elevation in Cell Cycle and Protein Metabolism Gene Transcription in Inactive Colonic Tissue From Icelandic Patients With Ulcerative Colitis.
Ontology highlight
ABSTRACT: Background:A combination of genetic and environmental factors is thought to be involved in the pathogenesis of ulcerative colitis (UC). In Iceland, the incidence of UC is one of the highest in the world. The aim of this study was to characterize patients with UC and identify potential germline mutations and pathways that could be associated with UC in this population. Methods:Exome sequencing and genome-wide microarray analysis on macroscopically noninflamed colonic mucosa from patients and controls were performed. Exome sequence data were examined for very rare or novel mutations that were over-represented in the UC cohort. Combined matching of variant analysis and downstream influence on transcriptomic expression in the rectum were analyzed. Results:One thousand eight hundred thirty-eight genes were differentially expressed in rectal tissue from UC patients and identified an upregulation in genes associated with cell cycle control and protein processing in the endoplasmic reticulum (ER). Two missense mutations in thiopurine S-methyltransferase (TPMT) with a minor allele frequency of 0.22 in the UC patients compared with a reported 0.062 in the Icelandic population were identified. A predicted damaging mutation in the gene SLC26A3 is potentially associated with increased expression of DUOX2 and DUOXA2 in rectal tissue. Conclusions:Colonic mucosa of UC patients demonstrates evidence of an elevation in genes involving cell proliferation and processing of proteins within the ER. Exome sequencing identified a possible increased prevalence of 2 damaging TPMT variants within the UC population, suggesting screening the UC population before initiation of thiopurine analogue therapy to avoid toxicity associated with these mutations.
SUBMITTER: Vinayaga-Pavan M
PROVIDER: S-EPMC6327231 | biostudies-literature | 2019 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA