Unknown

Dataset Information

0

Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics.


ABSTRACT: AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis. Although AMPK has been studied extensively in cellular processes, understanding of its substrates and downstream functional network, and their contributions to cell fate and disease development, remains incomplete. To elucidate the AMPK-dependent signaling pathways, we performed global quantitative phosphoproteomic analysis using wild-type and AMPK?1/?2-double knockout cells and discovered 160 AMPK-dependent phosphorylation sites. Further analysis using an AMPK consensus phosphorylation motif indicated that 32 of these sites are likely direct AMPK phosphorylation sites. We validated one uncharacterized protein, ARMC10, and demonstrated that the S45 site of ARMC10 can be phosphorylated by AMPK both in vitro and in vivo. Moreover, ARMC10 overexpression was sufficient to promote mitochondrial fission, whereas ARMC10 knockout prevented AMPK-mediated mitochondrial fission. These results demonstrate that ARMC10 is an effector of AMPK that participates in dynamic regulation of mitochondrial fission and fusion.

SUBMITTER: Chen Z 

PROVIDER: S-EPMC6328551 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics.

Chen Zhen Z   Lei Caoqi C   Wang Chao C   Li Nan N   Srivastava Mrinal M   Tang Mengfan M   Zhang Huimin H   Choi Jong Min JM   Jung Sung Yun SY   Qin Jun J   Chen Junjie J  

Nature communications 20190110 1


AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis. Although AMPK has been studied extensively in cellular processes, understanding of its substrates and downstream functional network, and their contributions to cell fate and disease development, remains incomplete. To elucidate the AMPK-dependent signaling pathways, we performed global quantitative phosphoproteomic analysis using wild-type and AMPKα1/α2-double knockout cells and discovered 160 AMPK-dependent p  ...[more]

Similar Datasets

2019-01-16 | PXD011696 | Pride
| S-EPMC4635038 | biostudies-literature
| S-EPMC3195509 | biostudies-literature
| S-EPMC5424104 | biostudies-literature
| S-EPMC7205775 | biostudies-literature
| S-EPMC6337099 | biostudies-literature
| S-EPMC9651865 | biostudies-literature
| S-EPMC4528247 | biostudies-literature
| S-EPMC6098843 | biostudies-literature
| S-EPMC5036175 | biostudies-literature