Unknown

Dataset Information

0

Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes.


ABSTRACT:

Background

Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes.

Method

We used an array-based approach to analyse genome-wide DNA methylation and gene expression in myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay.

Results

Genome-wide DNA methylation and gene expression differences between the sexes were detected in both myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1 in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes. Interestingly, differences in DNA methylation and expression between women and men were also found during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly, more DNA methylation changes occur in women compared to men on autosomes.

Conclusion

All together, we show that epigenetic and transcriptional differences exist in human myoblasts and myotubes as well as during differentiation between women and men. We believe that these intrinsic differences might contribute to sex dependent differences in muscular phenotypes.

SUBMITTER: Davegardh C 

PROVIDER: S-EPMC6332625 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes.

Davegårdh Cajsa C   Hall Wedin Elin E   Broholm Christa C   Henriksen Tora Ida TI   Pedersen Maria M   Pedersen Bente Klarlund BK   Scheele Camilla C   Ling Charlotte C  

Stem cell research & therapy 20190115 1


<h4>Background</h4>Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes.<h4>Method</h4>We used an array-based approach to analyse genome-wide DNA methylat  ...[more]

Similar Datasets

| S-EPMC2838843 | biostudies-literature
| S-EPMC6972731 | biostudies-literature
| S-EPMC2148100 | biostudies-literature
| S-EPMC9144336 | biostudies-literature
| S-EPMC6561151 | biostudies-literature
| S-EPMC7756801 | biostudies-literature
| S-EPMC3763492 | biostudies-literature
| S-EPMC6848216 | biostudies-literature
| S-EPMC3091777 | biostudies-literature
| S-EPMC8923442 | biostudies-literature