Unknown

Dataset Information

0

LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia.


ABSTRACT: Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson's disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced inflammation and pathogenesis. In this study, we investigated the role of LRRK2 in Mn-induced toxicity using human microglial cells (HMC3), LRRK2-wild-type (WT) and LRRK2-knockout (KO) RAW264.7 macrophage cells. Results showed that Mn activated LRRK2 kinase by phosphorylation of its serine residue at the 1292 position (S1292) as a marker of its kinase activity in macrophage and microglia, while inhibition with GSK2578215A (GSK) and MLi-2 abolished Mn-induced LRRK2 activation. LRRK2 deletion and its pharmacological inhibition attenuated Mn-induced apoptosis in macrophages and microglia, along with concomitant decreases in the pro-apoptotic Bcl-2-associated X (Bax) protein. LRRK2 deletion also attenuated Mn-induced production of reactive oxygen species (ROS) and the pro-inflammatory cytokine TNF-?. Mn-induced phosphorylation of mitogen-activated protein kinase (MAPK) p38 and ERK signaling proteins was significantly attenuated in LRRK2 KO cells and GSK-treated cells. Moreover, inhibition of MAPK p38 and ERK as well as LRRK2 attenuated Mn-induced oxidative stress and cytotoxicity. These findings suggest that LRRK2 kinase activity plays a critical role in Mn-induced toxicity via downstream activation of MAPK signaling in macrophage and microglia. Collectively, these results suggest that LRRK2 could be a potential molecular target for developing therapeutics to treat Mn-related neurodegenerative disorders.

SUBMITTER: Kim J 

PROVIDER: S-EPMC6333340 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia.

Kim Judong J   Pajarillo Edward E   Rizor Asha A   Son Deok-Soo DS   Lee Jayden J   Aschner Michael M   Lee Eunsook E  

PloS one 20190115 1


Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson's disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced  ...[more]

Similar Datasets

| S-EPMC8270673 | biostudies-literature
| S-EPMC7159489 | biostudies-literature
| S-EPMC5567511 | biostudies-literature
| S-EPMC3591334 | biostudies-literature
2019-03-27 | GSE121064 | GEO
| S-EPMC6431084 | biostudies-literature
| S-EPMC5487358 | biostudies-literature
| S-EPMC8624748 | biostudies-literature
| S-EPMC6347978 | biostudies-literature
| S-EPMC3693754 | biostudies-literature