Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome.
Ontology highlight
ABSTRACT: Transcriptome analysis is widely used in plant biology research to explore gene expression across a large variety of biological contexts such as those related to environmental stress and plant-pathogen interaction. Currently, next generation sequencing platforms are used to obtain a high amount of raw data to build the transcriptome of any plant. Here, we compare Illumina and Ion Torrent sequencing platforms for the construction and analysis of the holm oak (Quercus ilex) transcriptome. Genomic analysis of this forest tree species is a major challenge considering its recalcitrant character and the absence of previous molecular studies. In this study, Quercus ilex raw sequencing reads were obtained from Illumina and Ion Torrent and assembled by three different algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both sequencing technologies was also obtained in this study. The RAY-hybrid assembly generated the most complete transcriptome (1,116 complete sequences of which 1,085 were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion Torrent assemblies annotated the highest number of total transcripts (62,628 and 74,058 respectively). MIRA-Ion Torrent showed the highest number of shared sequences (84.8%) with the oak transcriptome. All the assembled transcripts from the hybrid transcriptome were annotated with gene ontology grouping them in terms of biological processes, molecular functions and cellular components. In addition, an in silico proteomic analysis was carried out using the translated assemblies as databases. Those from Ion Torrent showed more proteins compared to the Illumina and hybrid assemblies. This new generated transcriptome represents a valuable tool to conduct differential gene expression studies in response to biotic and abiotic stresses and to assist and validate the ongoing Q. ilex whole genome sequencing.
SUBMITTER: Guerrero-Sanchez VM
PROVIDER: S-EPMC6334949 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA