Unknown

Dataset Information

0

Exploring Novel Functions of the Small GTPase Ypt1p under Heat-Shock by Characterizing a Temperature-Sensitive Mutant Yeast Strain, ypt1-G80D.


ABSTRACT: In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone.

SUBMITTER: Kang CH 

PROVIDER: S-EPMC6337079 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exploring Novel Functions of the Small GTPase Ypt1p under Heat-Shock by Characterizing a Temperature-Sensitive Mutant Yeast Strain, <i>ypt1-G80D</i>.

Kang Chang Ho CH   Park Joung Hun JH   Lee Eun Seon ES   Paeng Seol Ki SK   Chae Ho Byoung HB   Chi Yong Hun YH   Lee Sang Yeol SY  

International journal of molecular sciences 20190101 1


In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in <i>Saccharomyces cerevisiae</i>. In the current study, we focused on the temperature-sensitive <i>ypt1-G80D</i> mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1p<sup>G80D</sup>. This defect results from an ina  ...[more]

Similar Datasets

| S-EPMC3406009 | biostudies-literature
| S-EPMC34579 | biostudies-literature
| S-EPMC2861988 | biostudies-literature
| S-EPMC8744673 | biostudies-literature
2012-08-14 | GSE40073 | GEO
| S-EPMC5748984 | biostudies-literature
| S-EPMC11309423 | biostudies-literature
| S-EPMC5773196 | biostudies-literature
| S-EPMC2575218 | biostudies-literature
| S-EPMC8403982 | biostudies-literature