Unknown

Dataset Information

0

Influence of Crystalline Admixtures on the Short-Term Behaviour of Mortars Exposed to Sulphuric Acid.


ABSTRACT: Using durable materials is a sustainable solution for extending the lifetime of constructions. The use of crystalline admixtures makes cementitious materials more durable. They plug pores, capillary tracts and microcracks, blocking the entrance of water due to the formation of crystals that prevent the penetration of liquids. The literature has covered the performance of these admixtures on concrete, but studies on mortars are still scarce. The aim of this study is to investigate the effect of an aggressive environment (sulphuric acid solution-3 wt%) on mortars produced with different percentages of a crystalline admixture (1%, 1.5% and 2% by weight of cement content). Physical and mechanical properties were studied after immersing the mortars in a H?SO? solution for 90 days. It was found that, after a 90-day sulphuric acid exposure, mortars with the crystalline admixture showed greater compressive strength than the control mortar, besides exhibiting lower mass loss. However, the crystalline admixture did not produce any significant effect on the capillary water absorption coefficient. In a nonaggressive environment, and in the short term, the crystalline admixture did not have a significant effect on the compressive strength, the capillary water absorption coefficient or the ultrasonic pulse velocity.

SUBMITTER: Garcia-Vera VE 

PROVIDER: S-EPMC6337189 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Influence of Crystalline Admixtures on the Short-Term Behaviour of Mortars Exposed to Sulphuric Acid.

García-Vera Victoria Eugenia VE   Tenza-Abril Antonio José AJ   Saval José Miguel JM   Lanzón Marcos M  

Materials (Basel, Switzerland) 20181227 1


Using durable materials is a sustainable solution for extending the lifetime of constructions. The use of crystalline admixtures makes cementitious materials more durable. They plug pores, capillary tracts and microcracks, blocking the entrance of water due to the formation of crystals that prevent the penetration of liquids. The literature has covered the performance of these admixtures on concrete, but studies on mortars are still scarce. The aim of this study is to investigate the effect of a  ...[more]

Similar Datasets

| S-EPMC8069652 | biostudies-literature
| S-EPMC7143351 | biostudies-literature
| S-EPMC7449521 | biostudies-literature
| S-EPMC6393438 | biostudies-literature
| S-EPMC7503674 | biostudies-literature
| S-EPMC5260087 | biostudies-literature
| S-EPMC4519926 | biostudies-literature
| S-EPMC4881357 | biostudies-literature
| S-EPMC5302017 | biostudies-literature
| S-EPMC7084247 | biostudies-literature