Unknown

Dataset Information

0

Identifying Protein Features Responsible for Improved Drug Repurposing Accuracies Using the CANDO Platform: Implications for Drug Design.


ABSTRACT: Drug repurposing is a valuable tool for combating the slowing rates of novel therapeutic discovery. The Computational Analysis of Novel Drug Opportunities (CANDO) platform performs shotgun repurposing of 2030 indications/diseases using 3733 drugs/compounds to predict interactions with 46,784 proteins and relating them via proteomic interaction signatures. The accuracy is calculated by comparing interaction similarities of drugs approved for the same indications. We performed a unique subset analysis by breaking down the full protein library into smaller subsets and then recombining the best performing subsets into larger supersets. Up to 14% improvement in accuracy is seen upon benchmarking the supersets, representing a 100?1000-fold reduction in the number of proteins considered relative to the full library. Further analysis revealed that libraries comprised of proteins with more equitably diverse ligand interactions are important for describing compound behavior. Using one of these libraries to generate putative drug candidates against malaria, tuberculosis, and large cell carcinoma results in more drugs that could be validated in the biomedical literature compared to using those suggested by the full protein library. Our work elucidates the role of particular protein subsets and corresponding ligand interactions that play a role in drug repurposing, with implications for drug design and machine learning approaches to improve the CANDO platform.

SUBMITTER: Mangione W 

PROVIDER: S-EPMC6337359 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identifying Protein Features Responsible for Improved Drug Repurposing Accuracies Using the CANDO Platform: Implications for Drug Design.

Mangione William W   Samudrala Ram R  

Molecules (Basel, Switzerland) 20190104 1


Drug repurposing is a valuable tool for combating the slowing rates of novel therapeutic discovery. The Computational Analysis of Novel Drug Opportunities (CANDO) platform performs shotgun repurposing of 2030 indications/diseases using 3733 drugs/compounds to predict interactions with 46,784 proteins and relating them via proteomic interaction signatures. The accuracy is calculated by comparing interaction similarities of drugs approved for the same indications. We performed a unique subset anal  ...[more]

Similar Datasets

| S-EPMC6812124 | biostudies-literature
| S-EPMC5958544 | biostudies-literature
| S-EPMC6555930 | biostudies-literature
| S-EPMC5903852 | biostudies-literature
| S-EPMC4167471 | biostudies-literature
| S-EPMC9452636 | biostudies-literature
| S-EPMC7886555 | biostudies-literature
| S-EPMC8126852 | biostudies-literature
| S-EPMC7280907 | biostudies-literature
| S-EPMC6206841 | biostudies-other