Unknown

Dataset Information

0

Corrosion Resistance of Aluminum against Acid Activation: Impact of Benzothiazole-Substituted Gallium Phthalocyanine.


ABSTRACT: This study describes the adsorption behavior of organic inhibitors at the aluminum-HCl solution interface and their corrosion inhibition performance. The organic inhibitors employed are: 4-(benzo [d]thiazol-2ylthio)phthalonitrile (BTThio) and tetrakis[(benzo[d]thiazol-2-yl-thio)phthalo- cyaninato]gallium(III) chloride (ClGaBTThioPc). The corrosion behavior of these inhibitors is investigated using electrochemical and computational techniques. Open circuit potential results reveal predominant cathodic character for the mechanism of aluminum corrosion inhibition by the inhibitors. Inhibition efficiency values from potentiodynamic polarization measurements increase from 46.9 to 70.8% for BTThio and 59.7 to 81.0% for ClGaBTThioPc within the concentration range of 2 to 10 ?M. Scanning electron microscopy (SEM) measurements reveal protection of the metal surface from acid attack, in the presence of the inhibitors and energy dispersive X-ray (EDX) measurements show that the most probable way by which the inhibitors protect the metal surface would be by shielding it from the corrosion attacks of Cl- from the acid. Quantum chemical parameters corroborate well with experimental findings.

SUBMITTER: Nnaji N 

PROVIDER: S-EPMC6337598 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Corrosion Resistance of Aluminum against Acid Activation: Impact of Benzothiazole-Substituted Gallium Phthalocyanine.

Nnaji Nnaemeka N   Nwaji Njemuwa N   Mack John J   Nyokong Tebello T  

Molecules (Basel, Switzerland) 20190108 1


This study describes the adsorption behavior of organic inhibitors at the aluminum-HCl solution interface and their corrosion inhibition performance. The organic inhibitors employed are: 4-(benzo [d]thiazol-2ylthio)phthalonitrile (BTThio) and tetrakis[(benzo[d]thiazol-2-yl-thio)phthalo- cyaninato]gallium(III) chloride (ClGaBTThioPc). The corrosion behavior of these inhibitors is investigated using electrochemical and computational techniques. Open circuit potential results reveal predominant cat  ...[more]

Similar Datasets

| S-EPMC7081611 | biostudies-literature
| S-EPMC3565164 | biostudies-literature
| S-EPMC6803920 | biostudies-literature
| S-EPMC7883345 | biostudies-literature
| S-EPMC9176199 | biostudies-literature
| S-EPMC4642266 | biostudies-literature
| S-EPMC7663423 | biostudies-literature
| S-EPMC5344368 | biostudies-literature
| S-EPMC8778058 | biostudies-literature
| S-EPMC7040843 | biostudies-literature