Unknown

Dataset Information

0

Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells.


ABSTRACT: Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found that mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in the vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not correspond to the acute level of mitochondrial activity but rather to the cumulative history of that activity.

SUBMITTER: Pickett SB 

PROVIDER: S-EPMC6345563 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells.

Pickett Sarah B SB   Thomas Eric D ED   Sebe Joy Y JY   Linbo Tor T   Esterberg Robert R   Hailey Dale W DW   Raible David W DW  

eLife 20181231


Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found that mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tes  ...[more]

Similar Datasets

| S-EPMC3281009 | biostudies-literature
| S-EPMC4099547 | biostudies-literature
| S-EPMC2265478 | biostudies-literature
| S-EPMC3167481 | biostudies-literature
| S-EPMC2662414 | biostudies-literature
| S-EPMC4241755 | biostudies-literature
| S-EPMC5191906 | biostudies-literature
| S-EPMC6728366 | biostudies-literature
| S-EPMC3469417 | biostudies-literature
| S-EPMC5272180 | biostudies-literature