Unknown

Dataset Information

0

Label-free classification of neurons and glia in neural stem cell cultures using a hyperspectral imaging microscopy combined with machine learning.


ABSTRACT: Due to a growing demand for a viable label-free observation method in the biomedical field, many techniques, such as quantitative phase imaging and Raman spectroscopy, have been studied, and a complementary approach, hyperspectral imaging, has also been introduced. We developed a high-speed hyperspectral imaging microscopy imaging method with commercially available apparatus, employing a liquid crystal tunable bandpass filter combined with a pixel-wise machine learning classification. Next, we evaluated the feasibility of the application of this method for stem cell research utilizing neural stem cells. Employing this microscopy method, with a 562 × 562 μm2 field of view, 2048 × 2048 pixel resolution images containing 63 wavelength pixel-wise spectra could be obtained in 30 seconds. The neural stem cells were differentiated into neurons and astroglia (glia), and a four-class cell classification evaluation (including neuronal cell body, glial cell body, process and extracellular region) was conducted under co-cultured conditions. As a result, an average of 88% of the objects of interest were correctly classified, with an average precision of 94%, and more than 99% of the extracellular pixels were correctly segregated. These results indicated that the proposed hyperspectral imaging microscopy is feasible as a label-free observation method for stem cell research.

SUBMITTER: Ogi H 

PROVIDER: S-EPMC6345994 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10900511 | biostudies-literature
| S-EPMC5566322 | biostudies-literature
| S-EPMC8962340 | biostudies-literature
| S-EPMC4163336 | biostudies-other
| S-EPMC8484462 | biostudies-literature
| S-EPMC6331195 | biostudies-literature
| S-EPMC4206310 | biostudies-other
| S-EPMC8528004 | biostudies-literature
| S-EPMC8359792 | biostudies-literature
| S-EPMC10372874 | biostudies-literature