Unknown

Dataset Information

0

Fluorogenic atom transfer radical polymerization in aqueous media as a strategy for detection.


ABSTRACT: The development of novel approaches to signal amplification in aqueous media could enable new diagnostic platforms for the detection of water-soluble analytes, including biomolecules. This paper describes a fluorogenic polymerization approach to amplify initiator signal by the detection of visible fluorescence upon polymerization in real-time. Fluorogenic monomers were synthesized and co-polymerized by atom transfer radical polymerization (ATRP) in water to reveal increasing polymer fluorescence as a function of both reaction time and initiator concentration. Optimization of the fluorogenic ATRP reaction conditions allowed for the quantitative detection of a small-molecule initiator as a model analyte over a broad linear concentration range (pM to mM). Raising the reaction temperature from 30 °C to 60 °C facilitated sensitive initiator detection at sub-picomolar concentrations in as little as 1 h of polymerization. This method was then applied to the detection of streptavidin as a model biological analyte by fluorogenic polymerization from a designed biotinylated ATRP initiator. Taken together, these studies represent the first example of a fluorogenic ATRP reaction and establish fluorogenic polymerization as a promising approach for the direct detection of aqueous analytes and biomolecular recognition events.

SUBMITTER: Allen ZT 

PROVIDER: S-EPMC6346399 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fluorogenic atom transfer radical polymerization in aqueous media as a strategy for detection.

Allen Zachary T ZT   Sackey-Addo Jemima R JR   Hopps Madeline P MP   Tahseen Danyal D   Anderson Joseph T JT   Graf Tyler A TA   Cooley Christina B CB  

Chemical science 20181108 4


The development of novel approaches to signal amplification in aqueous media could enable new diagnostic platforms for the detection of water-soluble analytes, including biomolecules. This paper describes a fluorogenic polymerization approach to amplify initiator signal by the detection of visible fluorescence upon polymerization in real-time. Fluorogenic monomers were synthesized and co-polymerized by atom transfer radical polymerization (ATRP) in water to reveal increasing polymer fluorescence  ...[more]

Similar Datasets

| S-EPMC9116290 | biostudies-literature
| S-EPMC7496184 | biostudies-literature
| S-EPMC7812758 | biostudies-literature
| S-EPMC9570559 | biostudies-literature
| S-EPMC10992558 | biostudies-literature
| S-EPMC5642931 | biostudies-literature
| S-EPMC8580105 | biostudies-literature
| S-EPMC4148144 | biostudies-literature
| S-EPMC7805480 | biostudies-literature
| S-EPMC7940335 | biostudies-literature