Project description:Metal-induced hypersensitivity is driven by T-cell sensitization to metal ions. Although numerous metals are associated with the development of diffuse parenchymal lung disease, beryllium-induced hypersensitivity is the best-studied to date. This review focuses on the interaction between innate and adaptive immunity that leads to the development of chronic beryllium disease. After beryllium exposure, activation of the innate immune system occurs through the engagement of pattern-recognition receptors. This activation leads to cell death, release of alarmins, and activation and migration of dendritic cells to lung-draining lymph nodes. These events culminate in the development of an adaptive immune response that is characterized by beryllium-specific, T-helper type 1-polarized, CD4+ T-cells and granuloma formation in the lung. The unique ability of beryllium to bind to human leukocyte antigen-DP molecules that express a glutamic acid at position 69 of the ?-chain alters the charge and conformation of the human leukocyte antigen-DP-peptide complex. These changes induce post-translational modifications that are recognized as non-self. In essence, the ability of beryllium to create neoantigens underlies the genesis of chronic beryllium disease, and demonstrates the similarity between beryllium-induced hypersensitivity and autoimmunity.
Project description:Chronic beryllium disease (CBD) is a granulomatous lung disorder that is associated with the accumulation of beryllium (Be)-specific CD4(+) T cells into the lung. Genetic susceptibility is linked to HLA-DPB1 alleles that possess a glutamic acid at position 69 (βGlu69), and HLA-DPB1*02:01 is the most prevalent βGlu69-containing allele. Using HLA-DP2 transgenic (Tg) mice, we developed a model of CBD that replicates the major features of the human disease. Here we characterized the T-cell receptor (TCR) repertoire of Be-responsive CD4(+) T cells derived from the lungs of Be oxide-exposed HLA-DP2 Tg mice. The majority of Be-specific T-cell hybridomas expressed TCR Vβ6, and a subset of these hybridomas expressed identical or nearly identical β-chains that were paired with different α-chains. We delineated mimotopes that bind to HLA-DP2 and form a complex recognized by Be-specific CD4(+) T cells in the absence of Be. These Be-independent peptides possess an arginine at p5 and a tryptophan at p7 that surround the Be-binding site within the HLA-DP2 acidic pocket and likely induce charge and conformational changes that mimic those induced by the Be(2+) cation. Collectively, these data highlight the interplay between peptides and Be in the generation of an adaptive immune response in metal-induced hypersensitivity.
Project description:ObjectivesPeak beryllium inhalation exposures and exposure to the skin may be relevant for developing beryllium sensitization (BeS). The objective of this study was to identify risk factors associated with BeS to inform the prevention of sensitization, and the development of chronic beryllium disease (CBD).MethodsIn a survey of short-term workers employed at a primary beryllium manufacturing facility between the years 1994-1999, 264 participants completed a questionnaire and were tested for BeS. A range of qualitative and quantitative peak inhalation metrics and skin exposure indices were created using: personal full-shift beryllium exposure measurements, 15 min to 24 h process-specific task and area exposure measurements, glove measurements as indicator of skin exposure, process-upset information gleaned from historical reports, and self-reported information on exposure events. Hierarchical clustering was conducted to systematically group participants based on similarity of patterns of 16 exposure variables. The associations of the exposure metrics with BeS and self-reported skin symptoms (in work areas processing beryllium salts as well as in other work areas) were evaluated using correlation analysis, log-binomial and logistic regression models with splines.ResultsMetrics of peak inhalation exposure, indices of skin exposure, and using material containing beryllium salts were significantly associated with skin symptoms and BeS; skin symptoms were a strong predictor of BeS. However, in this cohort, we could not tease apart the independent effects of skin exposure from inhalation exposure, as these exposures occurred simultaneously and were highly correlated. Hierarchical clustering identified groups of participants with unique patterns of exposure characteristics resulting in different prevalence of BeS and skin symptoms. A cluster with high skin exposure index and use of material containing beryllium salts had the highest prevalence of BeS and self-reported skin symptoms, followed by a cluster with high inhalation and skin exposure index and a very small fraction of jobs in which beryllium salts were used. A cluster with low inhalation and skin exposure and no workers using beryllium salts had no cases of BeS.ConclusionMultiple pathways and types of exposure were associated with BeS and may be important for informing BeS prevention. Prevention efforts should focus on controlling airborne beryllium exposures with attention to peaks, use of process characteristics (e.g. the likelihood of upset conditions to design interventions) minimize skin exposure to beryllium particles, and in particular, eliminate skin contact with beryllium salts to interrupt potential exposure pathways for BeS risk.
Project description:RationaleBeryllium sensitization (BeS) and chronic beryllium disease (CBD) are determined by at least one genetic factor, a glutamic acid at position 69 (E69) of the HLA-DPB1 gene, and by exposure to beryllium. The relationship between exposure and the E69 genotype has not been well characterized.ObjectivesThe study goal was to define the relationship between beryllium exposure and E69 for CBD and BeS.MethodsWorkers (n = 386) from a U.S. nuclear weapons facility were enrolled into a case-control study (70 BeS, 61 CBD, and 255 control subjects). HLA-DPB1 genotypes were determined by sequence-specific primer-polymerase chain reaction. Beryllium exposures were reconstructed on the basis of worker interviews and historical exposure measurements.Measurements and main resultsAny E69 carriage increased odds for CBD (odds ratio [OR], 7.61; 95% confidence interval [CI], 3.66-15.84) and each unit increase in lifetime weighted average exposure increased the odds for CBD (OR, 2.27; 95% CI, 1.26-4.09). Compared with E69-negative genotypes, a single E69-positive *02 allele increased the odds for BeS (OR, 12.01; 95% CI, 4.28-33.71) and CBD (OR, 3.46; 95% CI, 1.42-8.43). A single non-*02 E69 allele further increased the odds for BeS (OR, 29.54; 95% CI, 10.33-84.53) and CBD (OR, 11.97; 95% CI, 5.12-28.00) and two E69 allele copies conferred the highest odds for BeS (OR, 55.68; 95% CI, 14.80-209.40) and CBD (OR, 22.54; 95% CI, 7.00-72.62).ConclusionsE69 and beryllium exposure both contribute to the odds of CBD. The increased odds for CBD and BeS due to E69 appear to be differentially distributed by genotype, with non-*02 E69 carriers and E69 homozygotes at higher odds than those with *02 genotypes.
Project description:Forest species in the course of their evolution have experienced several environmental challenges, which since historic times include anthropogenic pollution. The effects of pollution on the genetic and epigenetic diversity in black pine (Pinus nigra) forests were investigated in the Amyntaio - Ptolemais - Kozani Basin, which has been for decades the largest lignite mining and burning center of Greece, with a total installed generating capacity of about 4.5 GW, operating for more than 70 years and resulting in large amounts of primary air pollutant emissions, mainly SO2, NOx and PM10. P. nigra, a biomarker for air pollution and a keystone species of affected natural ecosystems, was examined in terms of phenology (cone and seed parameters), genetics (283 AFLP loci) and epigenetics (606 MSAP epiloci), using two populations (exposed to pollution and control) of the current (mature trees) and future (embryos) stand. It was found that cone, seed, as well as genetic diversity parameters, did not show statistically significant differences between the exposed population and the control. Nevertheless, statistically significant differences were detected at the population epigenetic level. Moreover, there was a further differentiation regarding the intergenerational comparison: while the epigenetic diversity does not substantially change in the two generations assessed in the control population, epigenetic diversity is significantly higher in the embryo population compared to the parental stand in the exposed population. This study sheds a light to genome dynamics in a forest tree population exposed to long term atmospheric pollution burden and stresses the importance of assessing both genetics and epigenetics in biomonitoring applications.
Project description:Although both beryllium and its compounds display high toxicity, little attention has been focused on the removal of beryllium from wastewaters. In this research, magnetically modified biochar obtained from poor-quality wheat with two distinct FexOy contents was studied as a sorbent for the elimination of beryllium from an aqueous solution. The determined elimination efficiency was higher than 80% in both prepared composites, and the presence of FexOy did not affect the sorption properties. The experimental qmax values were determined to be 1.44 mg/g for original biochar and biochar with lower content of iron and 1.45 mg/g for the biochar with higher iron content. The optimum pH values favorable for sorption were determined to be 6. After the sorption procedure, the sorbent was still magnetically active enough to be removed from the solution by a magnet. Using magnetically modified sorbents proved to be an easy to apply, low-cost, and effective technique.
Project description:Modern societies are exposed to vast numbers of potentially hazardous chemicals. Despite demonstrated linkages between chemical exposure and severe health effects, there are limited, often conflicting, data on how adverse health effects of exposure differ across individuals.We tested the hypothesis that population variability in response to certain chemicals could elucidate a role for gene-environment interactions (GxE) in differential susceptibility.High-throughput screening (HTS) data on thousands of chemicals in genetically heterogeneous zebrafish were leveraged to identify a candidate chemical (Abamectin) with response patterns indicative of population susceptibility differences. We tested the prediction by generating genome-wide sequence data for 276 individual zebrafish displaying susceptible (Affected) vs. resistant (Unaffected) phenotypes following identical chemical exposure.We found GxE associated with differential susceptibility in the sox7 promoter region and then confirmed gene expression differences between phenotypic response classes.The results for Abamectin in zebrafish demonstrate that GxE associated with naturally occurring, population genetic variation play a significant role in mediating individual response to chemical exposure. https://doi.org/10.1289/EHP2662.
Project description:PurposeExposures related to beryllium (Be) are an enduring concern among workers in the nuclear weapons and other high-tech industries, calling for regular and rigorous biological monitoring. Conventional biomonitoring of Be in urine is not informative of cumulative exposure nor health outcomes. Biomarkers of exposure to Be based on non-invasive biomonitoring could help refine disease risk assessment. In a cohort of workers with Be exposure, we employed blood plasma extracellular vesicles (EVs) to discover novel biomarkers of exposure to Be.MethodsEVs were isolated from plasma using size-exclusion chromatography and subjected to mass spectrometry-based proteomics. A protein-based classifier was developed using LASSO regression and validated by ELISA.ResultsWe discovered a dual biomarker signature comprising zymogen granule protein 16B and putative protein FAM10A4 that differentiated between Be-exposed and -unexposed subjects. ELISA-based quantification of the biomarkers in an independent cohort of samples confirmed higher expression of the signature in the Be-exposed group, displaying high predictive accuracy (AUROC = 0.919). Furthermore, the biomarkers efficiently discriminated high- and low-exposure groups (AUROC = 0.749).ConclusionsThis is the first report of EV biomarkers associated with Be exposure and exposure levels. The biomarkers could be implemented in resource-limited settings for Be exposure assessment.
Project description:After the Fukushima Daiichi Nuclear Power Plant accident, there is growing concern about radiation-induced carcinogenesis. In addition, living in a long-term shelter or temporary housing due to disasters might cause unpleasant stress, which adversely affects physical and mental health. It’s been experimentally demonstrated that “eustress”, which is rich and comfortable, has beneficial effects for health using mouse models. In a previous study, mice raised in the enriched environment (EE) has shown effects such as suppression of tumor growth and enhancement of drug sensitivity during cancer treatment. However, it’s not yet been evaluated whether EE affects radiation-induced carcinogenesis. Therefore, to evaluate whether EE suppresses a radiation-induced carcinogenesis after radiation exposure, in this study, we assessed the serum leptin levels, radiation-induced DNA damage response and inflammatory response using the mouse model. In brief, serum and tissues were collected and analyzed over time in irradiated mice after manipulating the raising environment during the juvenile or adult stage. To assess the radiation-induced DNA damage response, we performed immunostaining for phosphorylated H2AX which is a marker of DNA double-strand break. Focusing on the polarization of macrophages in the inflammatory reaction that has an important role in carcinogenesis, we performed analysis using tissue immunofluorescence staining and RT-qPCR. Our data confirmed that EE breeding before radiation exposure improved the responsiveness to radiation-induced DNA damage and basal immunity, further suppressing the chronic inflammatory response, and that might lead to a reduction of the risk of radiation-induced carcinogenesis.