Vildagliptin improves high glucose-induced endothelial mitochondrial dysfunction via inhibiting mitochondrial fission.
Ontology highlight
ABSTRACT: The dipeptidyl peptidase 4 inhibitor vildagliptin (VLD), a widely used anti-diabetic drug, exerts favourable effects on vascular endothelium in diabetes. We determined for the first time the improving effects of VLD on mitochondrial dysfunction in diabetic mice and human umbilical vein endothelial cells (HUVECs) cultured under hyperglycaemic conditions, and further explored the mechanism behind the anti-diabetic activity. Mitochondrial ROS (mtROS) production was detected by fluorescent microscope and flow cytometry. Mitochondrial DNA damage and ATP synthesis were analysed by real time PCR and ATPlite assay, respectively. Mitochondrial network stained with MitoTracker Red to identify mitochondrial fragmentation was visualized under confocal microscopy. The expression levels of dynamin-related proteins (Drp1 and Fis1) were determined by immunoblotting. We found that VLD significantly reduced mtROS production and mitochondrial DNA damage, but enhanced ATP synthesis in endothelium under diabetic conditions. Moreover, VLD reduced the expression of Drp1 and Fis1, blocked Drp1 translocation into mitochondria, and blunted mitochondrial fragmentation induced by hyperglycaemia. As a result, mitochondrial dysfunction was alleviated and mitochondrial morphology was restored by VLD. Additionally, VLD promoted the phosphorylation of AMPK and its target acetyl-CoA carboxylase in the setting of high glucose, and AMPK activation led to a decreased expression and activation of Drp1. In conclusion, VLD improves endothelial mitochondrial dysfunction in diabetes, possibly through inhibiting Drp1-mediated mitochondrial fission in an AMPK-dependent manner.
SUBMITTER: Liu H
PROVIDER: S-EPMC6349192 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA